Aims Recent mechanistic explanations for community assembly focus on the debates surrounding niche-based deterministic and dispersalbased stochastic models.This body of work has emphasized the importance of both habit...Aims Recent mechanistic explanations for community assembly focus on the debates surrounding niche-based deterministic and dispersalbased stochastic models.This body of work has emphasized the importance of both habitat filtering and dispersal limitation,and many of these works have utilized the assumption of species spatial independence to simplify the complexity of the spatial modeling in natural communities when given dispersal limitation and/or habitat filtering.One potential drawback of this simplification is that it does not consider species interactions and how they may influence the spatial distribution of species,phylogenetic and functional diversity.Here,we assess the validity of the assumption of species spatial independence using data from a subtropical forest plot in southeastern China.Methods We use the four most commonly employed spatial statistical models—the homogeneous Poisson process representing pure random effect,the heterogeneous Poisson process for the effect of habitat heterogeneity,the homogenous Thomas process for sole dispersal limitation and the heterogeneous Thomas process for joint effect of habitat heterogeneity and dispersal limitation—to investigate the contribution of different mechanisms in shaping the species,phylogenetic and functional structures of communities.Important Findings Our evidence from species,phylogenetic and functional diversity demonstrates that the habitat filtering and/or dispersal-based models perform well and the assumption of species spatial independence is relatively valid at larger scales(50×50 m).Conversely,at local scales(10×10 and 20×20 m),the models often fail to predict the species,phylogenetic and functional diversity,suggesting that the assumption of species spatial independence is invalid and that biotic interactions are increasingly important at these spatial scales.展开更多
基金NSFC grant of National Natural Science Foundation of China(31170401)Dimensions of biodiversity grant of Natural Science Fundation(NSF 1046113)Natural Science Foundation of Zhejiang Province(Y5100361).
文摘Aims Recent mechanistic explanations for community assembly focus on the debates surrounding niche-based deterministic and dispersalbased stochastic models.This body of work has emphasized the importance of both habitat filtering and dispersal limitation,and many of these works have utilized the assumption of species spatial independence to simplify the complexity of the spatial modeling in natural communities when given dispersal limitation and/or habitat filtering.One potential drawback of this simplification is that it does not consider species interactions and how they may influence the spatial distribution of species,phylogenetic and functional diversity.Here,we assess the validity of the assumption of species spatial independence using data from a subtropical forest plot in southeastern China.Methods We use the four most commonly employed spatial statistical models—the homogeneous Poisson process representing pure random effect,the heterogeneous Poisson process for the effect of habitat heterogeneity,the homogenous Thomas process for sole dispersal limitation and the heterogeneous Thomas process for joint effect of habitat heterogeneity and dispersal limitation—to investigate the contribution of different mechanisms in shaping the species,phylogenetic and functional structures of communities.Important Findings Our evidence from species,phylogenetic and functional diversity demonstrates that the habitat filtering and/or dispersal-based models perform well and the assumption of species spatial independence is relatively valid at larger scales(50×50 m).Conversely,at local scales(10×10 and 20×20 m),the models often fail to predict the species,phylogenetic and functional diversity,suggesting that the assumption of species spatial independence is invalid and that biotic interactions are increasingly important at these spatial scales.