Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few wo...Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.展开更多
A point spread function(PSF) for the blurring component in positron emission tomography(PET) is studied. The PSF matrix is derived from the single photon incidence response function. A statistical iterative recons...A point spread function(PSF) for the blurring component in positron emission tomography(PET) is studied. The PSF matrix is derived from the single photon incidence response function. A statistical iterative reconstruction(IR) method based on the system matrix containing the PSF is developed. More specifically, the gamma photon incidence upon a crystal array is simulated by Monte Carlo(MC) simulation, and then the single photon incidence response functions are calculated. Subsequently, the single photon incidence response functions are used to compute the coincidence blurring factor according to the physical process of PET coincidence detection. Through weighting the ordinary system matrix response by the coincidence blurring factors, the IR system matrix containing the PSF is finally established. By using this system matrix, the image is reconstructed by an ordered subset expectation maximization(OSEM) algorithm. The experimental results show that the proposed system matrix can substantially improve the image radial resolution, contrast,and noise property. Furthermore, the simulated single gamma-ray incidence response function depends only on the crystal configuration, so the method could be extended to any PET scanner with the same detector crystal configuration.展开更多
Based on the point spread function (PSF) theory, the side-lobe extension direction of the impulse response in bistatic synthetic aperture radar (BSAR) is analyzed in detail; in addition, the corresponding autofocu...Based on the point spread function (PSF) theory, the side-lobe extension direction of the impulse response in bistatic synthetic aperture radar (BSAR) is analyzed in detail; in addition, the corresponding autofocus in BSAR should be considered along iso-range direction, not the traditional azimuth resolution (AR) direction. The conclusion is verified by the computer simulation.展开更多
In this paper the progress of document image Point Spread Function (PSF) estimation will be presented. At the beginning of the paper, an overview of PSF estimation methods will be introduced and the reason why knife...In this paper the progress of document image Point Spread Function (PSF) estimation will be presented. At the beginning of the paper, an overview of PSF estimation methods will be introduced and the reason why knife-edge input PSF estimation method is chosen will be explained. Then in the next section, the knife-edge input PSF estimation method will be detailed. After that, a simulation experiment is performed in order to verify the implemented PSF estimation method. Based on the simulation experiment, in next section we propose a procedure that makes automatic PSF estimation possible. A real document image is firstly taken as an example to illustrate the procedure and then be restored with the estimated PSF and Lucy-Richardson deconvolution method, and its OCR accuracy before and after deconvolution will be compared. Finally, we conclude the paper with the outlook for the future work.展开更多
A set of point spread functions (PSF) has been obtained by means of Monte-Carlo simulation for asmall gamma camera with a pinhole collimator of various hole diameters. The FOV (field of view) of the camera isexpended ...A set of point spread functions (PSF) has been obtained by means of Monte-Carlo simulation for asmall gamma camera with a pinhole collimator of various hole diameters. The FOV (field of view) of the camera isexpended from 45 mm to 70 mm in diameter. The position dependence of the variances of PSF is presented, and theacceptance for the 140 kev gamma rays is explored. A phantom of 70 mm in diameter was experimentally imaged inthe camera with effective FOV of only 45 mm in diameter.展开更多
A major challenge with studying plasmon-mediated emission events is the small size of plasmonic nanoparticles relative to the wavelength of light. Objects smaller than roughly half the wavelength of light will appear ...A major challenge with studying plasmon-mediated emission events is the small size of plasmonic nanoparticles relative to the wavelength of light. Objects smaller than roughly half the wavelength of light will appear as diffraction-limited spots in far-field optical images, presenting a significant experimental challenge for studying plasmonic processes on the nanoscale. Super-resolution imaging has recently been applied to plasmonic nanosystems and allows plasmon-mediated emission to be resolved on the order of ~5 nm. In super-resolution imaging, a diffraction-limited spot is fit to some model function in order to calculate the position of the emission centroid, which represents the loca- tion of the emitter. However, the accuracy of the centroid position strongly depends on how well the fitting function describes the data. This Perspective discusses the commonly used two-dimensional Gaussian fitting function applied to super-resolution imaging of plasmon-mediated emission, then introduces an alternative model based on dipole point spread flmctions. The two fitting models are compared and contrasted for super-resolution imaging of nanoparticle scattering/luminescence, surface-enhanced Raman scattering, and surface-enhanced fluorescence.展开更多
For a scintillating-fiber array fast-neutron radiography system,a point-spread-function computing model was introduced,and the simulation code was developed. The results of calculation show that fast-neutron radiograp...For a scintillating-fiber array fast-neutron radiography system,a point-spread-function computing model was introduced,and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources,the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200 μm×200 μm,the size of neutron source as small as a few millimeters,the distance between the source and the scintillating fiber array greater than 1 m,and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.展开更多
X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imagi...X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone- beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods.展开更多
In ground-based astronomy, images of objects in outer space are acquired via ground-based tele- scopes. However, the imaging system is generally interfered by atmospheric turbulence and hence images so acquired are bl...In ground-based astronomy, images of objects in outer space are acquired via ground-based tele- scopes. However, the imaging system is generally interfered by atmospheric turbulence and hence images so acquired are blurred with unknown point spread function (PSF). To restore the observed images, aberration of the wavefront at the telescope's aperture, i.e., the phase, is utilized to derive the PSF. However, the phase is not readily available. Instead, its gradients can be collected by wavefront sensors. Thus the usual approach is to use regularization methods to reconstruct high-resolution phase gradients and then use them to recover the phase in high accuracy. Here, we develop a model that reconstructs the phase directly. The proposed model uses the tight frame regularization and it can be solved efficiently by the Douglas-Rachford alternating direction method of multipliers whose convergence has been well established. Numerical results illustrate that our new model is efficient and gives more accurate estimation for the PSF.展开更多
The full aperture complex amplitude transmittance function of a multi-level diffraction lens with mask- alignment errors was derived based on scalar diffraction theory. The point spread function (PSF) was calculated...The full aperture complex amplitude transmittance function of a multi-level diffraction lens with mask- alignment errors was derived based on scalar diffraction theory. The point spread function (PSF) was calculated by the Kirchhoff diffraction integral. It is found that the radius of the Airy disk increases with the increase of the error in the direction of misalignment, and the image center shifts along the direction of misalignment. A fourlevel diffractive lens with a diameter of 80 mm was fabricated, and its PSF and diffraction efficiency of +1st order were calculated and measured. The distribution of PSF is consistent with the calculated results, and the tested diffraction efficiency is slightly smaller than the calculated value; the relative error is 5.71%.展开更多
In optical scanning holography, one pupil produces a spherical wave and another produces a plane wave. They interfere with each other and result in a fringe pattern for scanning a three-dimensional object. The resolut...In optical scanning holography, one pupil produces a spherical wave and another produces a plane wave. They interfere with each other and result in a fringe pattern for scanning a three-dimensional object. The resolution of the hologram reconstruction is affected by the point spread function(PSF) of the optical system. In this paper, we modulate the PSF by a spiral phase plate, which significantly enhances the lateral and depth resolution. We explain the theory for such resolution enhancement and show simulation results to verify the efficacy of the approach.展开更多
针对类美国末段高空域防御(Terminal High Altitude Area Defense,THAAD)系统的红外导引头外形,开展了气动光学效应计算分析,并将其用于飞行器设计。利用国家数值风洞工程高速流场计算软件NNW-HyFLOW,考虑热化学非平衡效应和材料传热耦...针对类美国末段高空域防御(Terminal High Altitude Area Defense,THAAD)系统的红外导引头外形,开展了气动光学效应计算分析,并将其用于飞行器设计。利用国家数值风洞工程高速流场计算软件NNW-HyFLOW,考虑热化学非平衡效应和材料传热耦合效应,对导引头典型状态的流场进行了模拟,获得了流场的密度、温度、压力等参数和窗口的温度场参数。基于流场参数,利用HyFLOW气动光学传输效应计算功能,开展了红外光学传输成像计算;利用HyFLOW气动光学辐射效应计算模块,开展了流场和光学窗口的热辐射计算。计算结果表明,类THAAD导引头在30 km以上飞行时,流场和光学窗口基本不会影响目标信号的光学传输成像,但流场和窗口的热辐射效应会对导引头识别目标造成影响。不过随着飞行高度的升高,这种影响会减小。展开更多
基金the Postdoctoral ScienceFoundation of China(No.2023M730156)the NationalNatural Foundation of China(No.62301012).
文摘Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.Y4811H805C and 81101175)
文摘A point spread function(PSF) for the blurring component in positron emission tomography(PET) is studied. The PSF matrix is derived from the single photon incidence response function. A statistical iterative reconstruction(IR) method based on the system matrix containing the PSF is developed. More specifically, the gamma photon incidence upon a crystal array is simulated by Monte Carlo(MC) simulation, and then the single photon incidence response functions are calculated. Subsequently, the single photon incidence response functions are used to compute the coincidence blurring factor according to the physical process of PET coincidence detection. Through weighting the ordinary system matrix response by the coincidence blurring factors, the IR system matrix containing the PSF is finally established. By using this system matrix, the image is reconstructed by an ordered subset expectation maximization(OSEM) algorithm. The experimental results show that the proposed system matrix can substantially improve the image radial resolution, contrast,and noise property. Furthermore, the simulated single gamma-ray incidence response function depends only on the crystal configuration, so the method could be extended to any PET scanner with the same detector crystal configuration.
文摘Based on the point spread function (PSF) theory, the side-lobe extension direction of the impulse response in bistatic synthetic aperture radar (BSAR) is analyzed in detail; in addition, the corresponding autofocus in BSAR should be considered along iso-range direction, not the traditional azimuth resolution (AR) direction. The conclusion is verified by the computer simulation.
文摘In this paper the progress of document image Point Spread Function (PSF) estimation will be presented. At the beginning of the paper, an overview of PSF estimation methods will be introduced and the reason why knife-edge input PSF estimation method is chosen will be explained. Then in the next section, the knife-edge input PSF estimation method will be detailed. After that, a simulation experiment is performed in order to verify the implemented PSF estimation method. Based on the simulation experiment, in next section we propose a procedure that makes automatic PSF estimation possible. A real document image is firstly taken as an example to illustrate the procedure and then be restored with the estimated PSF and Lucy-Richardson deconvolution method, and its OCR accuracy before and after deconvolution will be compared. Finally, we conclude the paper with the outlook for the future work.
基金Supported by the National Natural Science Foundation of China(10275063)
文摘A set of point spread functions (PSF) has been obtained by means of Monte-Carlo simulation for asmall gamma camera with a pinhole collimator of various hole diameters. The FOV (field of view) of the camera isexpended from 45 mm to 70 mm in diameter. The position dependence of the variances of PSF is presented, and theacceptance for the 140 kev gamma rays is explored. A phantom of 70 mm in diameter was experimentally imaged inthe camera with effective FOV of only 45 mm in diameter.
文摘A major challenge with studying plasmon-mediated emission events is the small size of plasmonic nanoparticles relative to the wavelength of light. Objects smaller than roughly half the wavelength of light will appear as diffraction-limited spots in far-field optical images, presenting a significant experimental challenge for studying plasmonic processes on the nanoscale. Super-resolution imaging has recently been applied to plasmonic nanosystems and allows plasmon-mediated emission to be resolved on the order of ~5 nm. In super-resolution imaging, a diffraction-limited spot is fit to some model function in order to calculate the position of the emission centroid, which represents the loca- tion of the emitter. However, the accuracy of the centroid position strongly depends on how well the fitting function describes the data. This Perspective discusses the commonly used two-dimensional Gaussian fitting function applied to super-resolution imaging of plasmon-mediated emission, then introduces an alternative model based on dipole point spread flmctions. The two fitting models are compared and contrasted for super-resolution imaging of nanoparticle scattering/luminescence, surface-enhanced Raman scattering, and surface-enhanced fluorescence.
基金Supported by the Foundation of Double-Hundred Talents of China Academy of Engineering Physics (Grant No. 2004R0301)
文摘For a scintillating-fiber array fast-neutron radiography system,a point-spread-function computing model was introduced,and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources,the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200 μm×200 μm,the size of neutron source as small as a few millimeters,the distance between the source and the scintillating fiber array greater than 1 m,and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.
基金Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China(2012ZX04007021)Young Scientists Fund of National Natural Science Foundation of China(51105315)+1 种基金Natural Science Basic Research Program of Shaanxi Province of China(2013JM7003)Northwestern Polytechnical University Foundation for Fundamental Research(JC20120226,3102014KYJD022)
文摘X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone- beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods.
基金supported by Hong Kong Research Grants Council(HKRGC)(Grant Nos.CUHK400412 and HKBU203311)CUHK Direct Allocation Grant(Grant No.4053007)+1 种基金CUHK Focused Investment Scheme(Grant No.1902036)National Natural Science Foundation of China(Grant No.11301055)
文摘In ground-based astronomy, images of objects in outer space are acquired via ground-based tele- scopes. However, the imaging system is generally interfered by atmospheric turbulence and hence images so acquired are blurred with unknown point spread function (PSF). To restore the observed images, aberration of the wavefront at the telescope's aperture, i.e., the phase, is utilized to derive the PSF. However, the phase is not readily available. Instead, its gradients can be collected by wavefront sensors. Thus the usual approach is to use regularization methods to reconstruct high-resolution phase gradients and then use them to recover the phase in high accuracy. Here, we develop a model that reconstructs the phase directly. The proposed model uses the tight frame regularization and it can be solved efficiently by the Douglas-Rachford alternating direction method of multipliers whose convergence has been well established. Numerical results illustrate that our new model is efficient and gives more accurate estimation for the PSF.
基金supported by the National Key R&D Program of China(No.2016YFB0500200)the Key Program of Chinese Academy of Sciences(No.YA16K010)
文摘The full aperture complex amplitude transmittance function of a multi-level diffraction lens with mask- alignment errors was derived based on scalar diffraction theory. The point spread function (PSF) was calculated by the Kirchhoff diffraction integral. It is found that the radius of the Airy disk increases with the increase of the error in the direction of misalignment, and the image center shifts along the direction of misalignment. A fourlevel diffractive lens with a diameter of 80 mm was fabricated, and its PSF and diffraction efficiency of +1st order were calculated and measured. The distribution of PSF is consistent with the calculated results, and the tested diffraction efficiency is slightly smaller than the calculated value; the relative error is 5.71%.
基金supported in part by the Research Grants Council of the Hong Kong Special Administrative Region,China, under project 7131–12Ethe NSFC RGC grant under project N–HKU714–13
文摘In optical scanning holography, one pupil produces a spherical wave and another produces a plane wave. They interfere with each other and result in a fringe pattern for scanning a three-dimensional object. The resolution of the hologram reconstruction is affected by the point spread function(PSF) of the optical system. In this paper, we modulate the PSF by a spiral phase plate, which significantly enhances the lateral and depth resolution. We explain the theory for such resolution enhancement and show simulation results to verify the efficacy of the approach.
文摘针对类美国末段高空域防御(Terminal High Altitude Area Defense,THAAD)系统的红外导引头外形,开展了气动光学效应计算分析,并将其用于飞行器设计。利用国家数值风洞工程高速流场计算软件NNW-HyFLOW,考虑热化学非平衡效应和材料传热耦合效应,对导引头典型状态的流场进行了模拟,获得了流场的密度、温度、压力等参数和窗口的温度场参数。基于流场参数,利用HyFLOW气动光学传输效应计算功能,开展了红外光学传输成像计算;利用HyFLOW气动光学辐射效应计算模块,开展了流场和光学窗口的热辐射计算。计算结果表明,类THAAD导引头在30 km以上飞行时,流场和光学窗口基本不会影响目标信号的光学传输成像,但流场和窗口的热辐射效应会对导引头识别目标造成影响。不过随着飞行高度的升高,这种影响会减小。