Aim In accordance with the positioning control for valve controlled motor electrohydraulic proportional servo systems driving the static load torque, the positioning performance was studied in the presence of the ti...Aim In accordance with the positioning control for valve controlled motor electrohydraulic proportional servo systems driving the static load torque, the positioning performance was studied in the presence of the time? varying deadzone and gain. Methods The large positioning errors caused by the time varying deadzone were significantly reduced by using the dynamic compensation method for the deadzone; and the large overshoot caused by the time varying gain were dramatically reduced by using the three section intelligent control schemes. Results Experimental results demonstrated that the positioning performance of rapid response, high accuracy and smaller or even no overshoot was achieved under a wide variations of load torque. Conclusion The good positioning performance for valve controlled motor servo systems has been achieved in the presence of the time varying deadzone and gain.展开更多
文摘Aim In accordance with the positioning control for valve controlled motor electrohydraulic proportional servo systems driving the static load torque, the positioning performance was studied in the presence of the time? varying deadzone and gain. Methods The large positioning errors caused by the time varying deadzone were significantly reduced by using the dynamic compensation method for the deadzone; and the large overshoot caused by the time varying gain were dramatically reduced by using the three section intelligent control schemes. Results Experimental results demonstrated that the positioning performance of rapid response, high accuracy and smaller or even no overshoot was achieved under a wide variations of load torque. Conclusion The good positioning performance for valve controlled motor servo systems has been achieved in the presence of the time varying deadzone and gain.