The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine...The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
Gastroesophageal reflux disease(GERD)is a digestive system disease characterized by uncomfortable symptoms caused by reflux of gastric contents.It has increased sharply with the development of my country’s society an...Gastroesophageal reflux disease(GERD)is a digestive system disease characterized by uncomfortable symptoms caused by reflux of gastric contents.It has increased sharply with the development of my country’s society and economy.If there is no reasonable and effective Prevention and treatment measures will inevitably increase the financial burden of patients,and also pose a major threat to the quality of life and health of patients.Cell signal transduction mediated by various receptors participates in the regulation mechanism of the body's various levels of biological functions.By inhibiting or activating its functions,the purpose of curing diseases can be achieved,and cell signal transduction has been used in traditional Chinese medicine.Studying.The theory of"adjusting the central axis"was explored by Professor Xie Sheng through decades of clinical experience.It has been proven in practice to treat GERD.It starts from the model of TCM viscera and expounds that the pathogenesis of GERD involves multiple viscera.Multi-system and multi-factor,explain the correlation of the disease with a variety of zang-fu syndromes,and use this as a basis to guide the clinical use of hidden prescriptions.The back-shu pointer therapy can prevent GERD by correcting the unbalanced state of the viscera and qi machine,and promoting the junction of the two channels of Ren and Du.Based on the theory of"adjusting the hub by the pivot",this article expounds the pathogenesis of GERD from the perspective of traditional Chinese medicine.By consulting the literature and combining with the previous research,it proposes to analyze the methods and methods of Backshu pointer therapy to prevent and treat GERD from the AMPK/ULK1 mediated autophagy pathway.展开更多
A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of...A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.展开更多
We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with sol...We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with solutions having singularities of higher order, and for the former obtain the extended Neother theorem of complete equation as well as the solutions and the solvable conditions of characteristic equation from the latter. The conclusions drawn by this article contain special cases discussed before.展开更多
Because of the low convergence efficiency of the typical Vicsek model,a Vicsek with static summoning points(VSSP)algorithm based on the Vicsek model considering static summoning points is proposed.Firstly,the mathemat...Because of the low convergence efficiency of the typical Vicsek model,a Vicsek with static summoning points(VSSP)algorithm based on the Vicsek model considering static summoning points is proposed.Firstly,the mathematical model of the individual movement total cost on each summoning point is established.Then the individual classification rule is designed according to the initial state of the cluster to obtain the subclusters guided by each summoning point.Finally,the summoning factor is introduced to modify the course angle updating formula of the Vicsek model.To verify the effectiveness of the proposed algorithm and study the effect of the cluster summoning factor on the convergence rate,three groups of simulation experiments under different summoning factors are designed in this paper.To verify the superiority of the VSSP algorithm,the performance of the VSSP algorithm is compared with the classic algorithm by designing the algorithm performance comparison verification experiment.The results show that the algorithm proposed in this paper has good convergence and course angle consistency.The summoning factor is the sensitive factor of cluster convergence.This algorithm can provide a reference for efficient cluster segmentation movement.展开更多
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow con...Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.展开更多
A novel multi-view 3D face registration method based on principal axis analysis and labeled regions orientation called local orientation registration is proposed.The pre-registration is achieved by transforming the mu...A novel multi-view 3D face registration method based on principal axis analysis and labeled regions orientation called local orientation registration is proposed.The pre-registration is achieved by transforming the multi-pose models to the standard frontal model's reference frame using the principal axis analysis algorithm.Some significant feature regions, such as inner and outer canthus, nose tip vertices, are then located by using geometrical distribution characteristics.These regions are subsequently employed to compute the conversion parameters using the improved iterative closest point algorithm, and the optimal parameters are applied to complete the final registration.Experimental results implemented on the proper database demonstrate that the proposed method significantly outperforms others by achieving 1.249 and 1.910 mean root-mean-square measure with slight and large view variation models, respectively.展开更多
The relationship between ions irradiation and the induced microstructures(point defects,dislocations,clusters,etc.)could be better analyzed and explained by simulation.The mean field rate theory and cluster dynamics a...The relationship between ions irradiation and the induced microstructures(point defects,dislocations,clusters,etc.)could be better analyzed and explained by simulation.The mean field rate theory and cluster dynamics are used to simulate the effect of implanted Fe on the point defects concentration quantitatively.It is found that the depth distribution of point defect concentration is relatively gentle than that of damage calculated by SRIM software.Specifically,the damage rate and point defect concentration increase by 1.5 times and 0.6 times from depth of 120 nm to 825 nm,respectively.With the consideration of implanted Fe ions,which effectively act as interstitial atoms at the depth of high ion implantation rate,the vacancy concentration Cv decreases significantly after reaching the peak value,while the interstitial atom concentration Ci increases significantly after decline of the previous stage.At the peak depth of ion implantation,Cv dropped by 86%,and Ci increased by 6.2 times.Therefore,the implanted ions should be considered into the point defects concentration under high dose of heavy ion irradiation,which may help predict the concentration distribution of defect clusters,further analyzing the evolution behavior of solute precipitation.展开更多
In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by co...In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by convex hull, triangulated irregular network (TIN), Voronoi diagram, etc.;second, we manually assign decisional attributes to the information table according to conditional attributes. In doing so, the spatial information and attribute information are integrated together to evaluate the importance of points and rivers by rough sets theory. Finally, we select the point cluster and the river network in a progressive manner. The experimental results show that our method is valid and effective. In comparison with previous work, our method has the advantage to adaptively consider the spatial and attribute information at the same time without any a priori knowledge.展开更多
Because of the limit of angle of view(AOV) of IR imaging seeker during the approach of missile and target, the detector can only get the partial image sequence of aircraft nose after "lose point". Recognizin...Because of the limit of angle of view(AOV) of IR imaging seeker during the approach of missile and target, the detector can only get the partial image sequence of aircraft nose after "lose point". Recognizing the axis direction on the basis of partial IR image sequence is a key issue of the advanced IR imaging guide air-to-air missile faced. In this paper, a recognition method was proposed based on the morphological skeleton and modified Hough transform, and this method can recognize correctly the axis direction of aircraft nose in different poses during missile-target encounter. Firstly, the morphological skeleton transform was used for the extraction of skeleton features. Secondly, the modified Hough transform was used for the straight-lines detection. Finally, According to the relations between aircraft nose and axis and invariant of nose features in high-speed IR image sequence, the axis direction can be detected and calculated. Experimental results indicate that the method is feasible and effective, and the precision of axis direction recognized can meet the requirement of accurate burst control of GIF fuze.展开更多
井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述...井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。展开更多
针对外卖配送电动自行车换电柜布局不合理带来的部分换电柜利用率低与部分换电需求得不到及时满足的供需矛盾问题,本文通过聚类POI(Point of Interest)数据确定外卖配送起止点,并通过仿真模拟外卖骑手配送路径预测外卖配送电动自行车换...针对外卖配送电动自行车换电柜布局不合理带来的部分换电柜利用率低与部分换电需求得不到及时满足的供需矛盾问题,本文通过聚类POI(Point of Interest)数据确定外卖配送起止点,并通过仿真模拟外卖骑手配送路径预测外卖配送电动自行车换电需求时空分布,构建换电柜运营商总成本最低和用户满意度最高的多目标换电柜选址定容模型,并以新乡市主城区为例,采用NSGA-II(Non-dominated Sorting Genetic Algorithm II)算法得到换电柜选址定容方案。研究结果表明:仿真模拟得出的换电需求时间分布预测值与实际值基本吻合,换电需求在11:00,14:00,17:00和20:00左右急剧增长,且11:00和14:00左右的换电需求量显著高于17:00和20:00左右的换电需求量,外卖骑手配送路径仿真模拟方法在换电需求预测上具有较高的预测精度;换电柜选址方案不能同时满足运营商和用户利益均为最优,用户满意度的提高需以增加运营商总成本为代价;同时,兼顾运营商和用户利益的新乡市主城区外卖配送电动自行车换电柜最佳建设数量为26,其中,容量为11的换电柜11个,容量为22的换电柜8个,容量为33的换电柜7个;新乡市主城区应按照备选点编号15-7-19-17依次新增换电柜至30个,此时,用户满意度最大,若继续增加换电柜建设数量,只会增加运营商总成本。展开更多
基金funding from the National Natural Science Foundation of China(No.41572308)。
文摘The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
基金National Natural Science Foundation(No.82004299)Enhancement Program of Evidence-based Therapy of Digestive System Diseases(gastroesophageal reflux disease)with Traditional Chinese Medicine(No.2019XZZX-XH003)Innovation Planning Program of Postgraduate Students Education of Guangxi University of Traditional Chinese Medicine in 2020(No.YCSY2020030)。
文摘Gastroesophageal reflux disease(GERD)is a digestive system disease characterized by uncomfortable symptoms caused by reflux of gastric contents.It has increased sharply with the development of my country’s society and economy.If there is no reasonable and effective Prevention and treatment measures will inevitably increase the financial burden of patients,and also pose a major threat to the quality of life and health of patients.Cell signal transduction mediated by various receptors participates in the regulation mechanism of the body's various levels of biological functions.By inhibiting or activating its functions,the purpose of curing diseases can be achieved,and cell signal transduction has been used in traditional Chinese medicine.Studying.The theory of"adjusting the central axis"was explored by Professor Xie Sheng through decades of clinical experience.It has been proven in practice to treat GERD.It starts from the model of TCM viscera and expounds that the pathogenesis of GERD involves multiple viscera.Multi-system and multi-factor,explain the correlation of the disease with a variety of zang-fu syndromes,and use this as a basis to guide the clinical use of hidden prescriptions.The back-shu pointer therapy can prevent GERD by correcting the unbalanced state of the viscera and qi machine,and promoting the junction of the two channels of Ren and Du.Based on the theory of"adjusting the hub by the pivot",this article expounds the pathogenesis of GERD from the perspective of traditional Chinese medicine.By consulting the literature and combining with the previous research,it proposes to analyze the methods and methods of Backshu pointer therapy to prevent and treat GERD from the AMPK/ULK1 mediated autophagy pathway.
基金Supported by the National Natural Science Foundation of China (No.40471089) and the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping.
文摘A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.
基金Supported by the NNSF of China (10471107)RFDP of Higher Education of China (20060486001)
文摘We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with solutions having singularities of higher order, and for the former obtain the extended Neother theorem of complete equation as well as the solutions and the solvable conditions of characteristic equation from the latter. The conclusions drawn by this article contain special cases discussed before.
基金supported by the National Natural Science Foundation of China(51979193)the China Scholarship Council(201506290080)+1 种基金the China Postdoctoral Science Foundation(2019M653652)the Natural Science Basic Research Plan in Shaanxi Province of China(2019JQ-607).
文摘Because of the low convergence efficiency of the typical Vicsek model,a Vicsek with static summoning points(VSSP)algorithm based on the Vicsek model considering static summoning points is proposed.Firstly,the mathematical model of the individual movement total cost on each summoning point is established.Then the individual classification rule is designed according to the initial state of the cluster to obtain the subclusters guided by each summoning point.Finally,the summoning factor is introduced to modify the course angle updating formula of the Vicsek model.To verify the effectiveness of the proposed algorithm and study the effect of the cluster summoning factor on the convergence rate,three groups of simulation experiments under different summoning factors are designed in this paper.To verify the superiority of the VSSP algorithm,the performance of the VSSP algorithm is compared with the classic algorithm by designing the algorithm performance comparison verification experiment.The results show that the algorithm proposed in this paper has good convergence and course angle consistency.The summoning factor is the sensitive factor of cluster convergence.This algorithm can provide a reference for efficient cluster segmentation movement.
基金Supported by National Natural Science Foundation of China(Grant No.11372036)
文摘Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.
基金supported by the New Century Excellent Talents of China (NCET-05-0866)
文摘A novel multi-view 3D face registration method based on principal axis analysis and labeled regions orientation called local orientation registration is proposed.The pre-registration is achieved by transforming the multi-pose models to the standard frontal model's reference frame using the principal axis analysis algorithm.Some significant feature regions, such as inner and outer canthus, nose tip vertices, are then located by using geometrical distribution characteristics.These regions are subsequently employed to compute the conversion parameters using the improved iterative closest point algorithm, and the optimal parameters are applied to complete the final registration.Experimental results implemented on the proper database demonstrate that the proposed method significantly outperforms others by achieving 1.249 and 1.910 mean root-mean-square measure with slight and large view variation models, respectively.
基金the Special Funds for the Key Research and Development Program of the Ministry of Science and Technology of China(Grant No.2017YFB0702201).
文摘The relationship between ions irradiation and the induced microstructures(point defects,dislocations,clusters,etc.)could be better analyzed and explained by simulation.The mean field rate theory and cluster dynamics are used to simulate the effect of implanted Fe on the point defects concentration quantitatively.It is found that the depth distribution of point defect concentration is relatively gentle than that of damage calculated by SRIM software.Specifically,the damage rate and point defect concentration increase by 1.5 times and 0.6 times from depth of 120 nm to 825 nm,respectively.With the consideration of implanted Fe ions,which effectively act as interstitial atoms at the depth of high ion implantation rate,the vacancy concentration Cv decreases significantly after reaching the peak value,while the interstitial atom concentration Ci increases significantly after decline of the previous stage.At the peak depth of ion implantation,Cv dropped by 86%,and Ci increased by 6.2 times.Therefore,the implanted ions should be considered into the point defects concentration under high dose of heavy ion irradiation,which may help predict the concentration distribution of defect clusters,further analyzing the evolution behavior of solute precipitation.
文摘In this paper, we applied the rough sets to the point cluster and river network selection. In order to meet the requirements of rough sets, first, we structuralize and quantify the spatial information of objects by convex hull, triangulated irregular network (TIN), Voronoi diagram, etc.;second, we manually assign decisional attributes to the information table according to conditional attributes. In doing so, the spatial information and attribute information are integrated together to evaluate the importance of points and rivers by rough sets theory. Finally, we select the point cluster and the river network in a progressive manner. The experimental results show that our method is valid and effective. In comparison with previous work, our method has the advantage to adaptively consider the spatial and attribute information at the same time without any a priori knowledge.
文摘Because of the limit of angle of view(AOV) of IR imaging seeker during the approach of missile and target, the detector can only get the partial image sequence of aircraft nose after "lose point". Recognizing the axis direction on the basis of partial IR image sequence is a key issue of the advanced IR imaging guide air-to-air missile faced. In this paper, a recognition method was proposed based on the morphological skeleton and modified Hough transform, and this method can recognize correctly the axis direction of aircraft nose in different poses during missile-target encounter. Firstly, the morphological skeleton transform was used for the extraction of skeleton features. Secondly, the modified Hough transform was used for the straight-lines detection. Finally, According to the relations between aircraft nose and axis and invariant of nose features in high-speed IR image sequence, the axis direction can be detected and calculated. Experimental results indicate that the method is feasible and effective, and the precision of axis direction recognized can meet the requirement of accurate burst control of GIF fuze.
文摘井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。