期刊文献+
共找到10,611篇文章
< 1 2 250 >
每页显示 20 50 100
Online identification and extraction method of regional large-scale adjustable load-aggregation characteristics
1
作者 Siwei Li Liang Yue +1 位作者 Xiangyu Kong Chengshan Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期313-323,共11页
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide... This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective. 展开更多
关键词 load aggregation Regional large-scale Online recognition Feature extraction method
下载PDF
Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method
2
作者 Zhou Wei Hou Tianshun +3 位作者 Chen Ye Wang Qi Luo Yasheng Zhang Yafei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期815-828,共14页
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten... Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades. 展开更多
关键词 lightweight soil cyclic loading dynamic triaxial test discrete element method hysteresis curve
下载PDF
Effect of heterogeneity on mechanical and micro-seismic behaviors of sandstone subjected to multi-level cyclic loading: A discrete element method investigation
3
作者 Zhengyang Song Zhen Yang +3 位作者 Min Zhang Fei Wang Martin Herbst Heinz Konietzky 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2556-2581,共26页
In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.Thi... In numerical simulation of the mechanical responses and acoustic emission(AE)characteristics of rocks under cyclic loading,the impacts of compositional heterogeneities of mineral grains have barely been considered.This will lead to a poor reproduction of rock’s behaviors in terms of stress-strain relationship and micro-seismic characteristics in numerical simulation.This work aims to analyze and reveal the impact of parameter heterogeneity on the rock’s fatigue and micro-seismic properties based on PFC3D.Two distribution patterns(uniform and Weibull distributions),are implemented to assign four critical parameters(i.e.tensile strength,cohesion,parallel bond stiffness and linear stiffness)for 32 sets of numerical schemes.The results show that the models with high heterogeneity of tensile strength and cohesion can better reproduce the stress-strain relationship as well as the patterns of cumulative AE counts and energy magnitude.The evolution of the proportion of three-level AE events in the laboratory test is consistent with the numerical results when the highly heterogeneous tensile strength and cohesion are distributed.The numerical results can provide practical guidance to the PFC-based modeling of rock heterogeneity when exposed to multi-level cyclic loading and AE monitoring. 展开更多
关键词 Discrete element method(DEM) HETEROGENEITY Weibull distribution PFC3D Cyclic loading Acoustic emission(AE)
下载PDF
Numerical Study of the Vibrations of Beams with Variable Stiffness under Impulsive or Harmonic Loading
4
作者 Moussa Sali Fabien Kenmogne +1 位作者 Jean Bertin Nkibeu Abdou Njifenjou 《World Journal of Engineering and Technology》 2024年第2期401-425,共25页
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho... The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%. 展开更多
关键词 Successive Approximations method Direct Integration Differential Equations Beams of Variable Stiffness Quadratic Parabola Impulse and Harmonic loads
下载PDF
Effects of Loading Methods on the Color,Phenolic and Antioxidant Properties of Cured Tobacco Leaves
5
作者 傅茂润 赵双 +12 位作者 侯连涛 曲清莉 代红飞 董梅 苏建东 刘广玉 杨举田 王梅勋 田雷 杨永花 谭效磊 徐硕 宗浩 《Agricultural Science & Technology》 CAS 2014年第7期1196-1199,共4页
[Objective] To investigate the effects of different loading methods on tobacco leaf quality.[Method] With tobacco comb,tobacco clamp,and tobacco basket,color,phenolic compounds and their antioxidant capacity of flue-c... [Objective] To investigate the effects of different loading methods on tobacco leaf quality.[Method] With tobacco comb,tobacco clamp,and tobacco basket,color,phenolic compounds and their antioxidant capacity of flue-cured tobacco leaves were studied.[Result] The results showed that L*,a* and b* values of tobacco leaves packaged by tobacco clamp and comb were higher than those of tobacco basket and no significant differences were found beween values of a* and b*,however,between L* and h values,remarkable differences existed among three loading methods.Total phenolic content and chlorogenic acid content of tobacco leaves loaded by tobacco comb kept the highest,followed by smoke clamp and tobacco basket (P<0.05).On the other hand,rutin content showed little differences among treatments.The order of the antioxidant properties,such as DPPH free radical scavenging activity and reducing powder,of tobacco leaves by different loading methods was tobacco comb > tobacco clamp > loose basket and a positive relationship was found of antioxiang property with total phenolic content and chlorogenic acid content.[Conclusion] In view of tobacco leaves quality and antioxidant property,loading method with tobacco comb proved to be a better choice. 展开更多
关键词 PHENOLIC Color parameters Antioxidant capacity loading method Tobacco leaves
下载PDF
SIMPLIFIED ANALYSIS METHOD FOR ULTIMATE LOAD CAPACITY OF WEB PLATES OF BOX GIRDERS
6
作者 韩庆华 程万海 +1 位作者 尹越 刘锡良 《Transactions of Tianjin University》 EI CAS 2000年第1期32-35,共4页
The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyz... The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyzed and on the basis of domestic and overseas design codes of steel structures,the corresponding simplified analysis methods are put forward for the engineering design or code revision.It is proved that the simplified methods are safe,efficient and practicable through the comparison between several results. 展开更多
关键词 post buckling behaviour ultimate load capacity simplified analysis method web plates of box girders
全文增补中
ELASTIC MODULUS REDUCTION METHOD FOR LIMIT LOAD EVALUATION OF FRAME STRUCTURES 被引量:20
7
作者 Lufeng Yang Bo Yu Yongping Qiao 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第2期109-115,共7页
A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR... A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method. 展开更多
关键词 limit load element bearing ratio degree of uniformity elastic modulus reduction method
下载PDF
Slope stability analysis under seismic load by vector sum analysis method 被引量:15
8
作者 Mingwei Guo Xiurun Ge Shuilin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期282-288,共7页
The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is... The vibration characteristics and dynamic responses of rock and soil under seismic load can be estimated with dynamic finite element method (DFEM). Combining with the DFEM, the vector sum analysis method (VSAM) is employed in seismic stability analysis of a slope in this paper. Different from other conventional methods, the VSAM is proposed based on the vector characteristic of force and current stress state of the slope. The dynamic stress state of the slope at any moment under seismic load can he obtained by the DFEM, thus the factor of safety of the slope at any moment during earthquake can be easily obtained with the VSAM in consideration of the DFEM. Then, the global stability of the slope can be estimated on the basis of time-history curve of factor of safety and reliability theory. The VSAM is applied to a homogeneous slope under seismic load. The factor of safety of the slope is 1.30 under gravity only and the dynamic factor of safety under seismic load is 1.21. The calculating results show that the dynamic characteristics and stability state of the slope with input ground motion can be actually analyzed. It is believed that the VSAM is a feasible and practical approach to estimate the dynamic stability of slopes under seismic load. 展开更多
关键词 slope stability vector sum analysis method (VSAM) seismic load dynamic finite element method (DFEM)
下载PDF
Grouping response method for equivalent static wind loads based on a modified LRC method 被引量:9
9
作者 Zhou Xuanyi Gu Ming Li Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期107-119,共13页
Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by st... Wind loading is one of the most important loads for controlling the design of large-span roof structures. Equivalent static wind loads, which can generally aim at determining a specific response, are widely used by structural designers. A method for equivalent static wind loads applicable to multi-responses is proposed in this paper. A modified load- response-correlation (LRC) method corresponding to a particular peak response is presented, and the similarity algorithm implemented for the group response is described. The main idea of the algorithm is that two responses can be put into one group if the value of one response is close to that of the other response, when the structure is subjected to equivalent static wind loads aiming at the other response. Based on the modified LRC, the grouping response method is put forward to construct equivalent static wind loading. This technique can simultaneously reproduce peak responses for some grouped responses. To verify its computational accuracy, the method is applied to an actual large-span roof structure. Calculation results show that when the similarity of responses in the same group is high, equivalent static wind loads with high accuracy and reasonable magnitude of equivalent static wind distribution can be achieved. 展开更多
关键词 large-span roof equivalent static wind loads modified LRC method grouping response similarityalgorithm
下载PDF
Limit analysis of vertical anti-pulling screw pile group under inclined loading on 3D elastic-plastic finite element strength reduction method 被引量:11
10
作者 董天文 郑颖人 《Journal of Central South University》 SCIE EI CAS 2014年第3期1165-1175,共11页
Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the... Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered. 展开更多
关键词 strength reduction method screw pile group ultimate load inclined loading
下载PDF
Analytical method of load-transfer of single pile under expansive soil swelling 被引量:10
11
作者 范臻辉 王永和 +1 位作者 肖宏彬 张春顺 《Journal of Central South University of Technology》 EI 2007年第4期575-579,共5页
The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and t... The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and the shear-deformation method.The derivation of analytic solution to load-transfer for single pile in expansive soil could hereby be obtained by means of superposition principle under expansive soils swelling.The comparison of two engineering examples was made to prove the credibility of the suggested method.The analyzed results show that this analytic solution can achieve high precision with few parameters required,indicating its' simplicity and practicability in engineering application.The employed method can contribute to determining the greatest tension along pile shaft resulting from expansive soils swelling and provide reliable bases for engineering design.The method can be employed to obtain various distributive curves of axial force,settlements and skin friction along the pile shaft with the changes of active depth,vertical movements of the surface and loads of pile-top. 展开更多
关键词 expansive soil PILE shear-deformation method load transfer
下载PDF
Load Reduction Test Method of Similarity Theory and BP Neural Networks of Large Cranes 被引量:4
12
作者 YANG Ruigang DUAN Zhibin +2 位作者 LU Yi WANG Lei XU Gening 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期145-151,共7页
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv... Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes. 展开更多
关键词 similarity theory BP neural network large bridge crane load reduction equivalent test method
下载PDF
High-precision solution to the moving load problem using an improved spectral element method 被引量:3
13
作者 Shu-Rui Wen Zhi-Jing Wu Nian-Li Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期68-81,共14页
In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means t... In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases. 展开更多
关键词 Moving load Spectral element method Improved function Dynamic response High precision
下载PDF
Effects of loading waveforms on rock damage using particle simulation method 被引量:5
14
作者 XIA Ming GONG Feng-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1755-1765,共11页
The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at t... The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at the mesoscopic scale, such as loading frequency, stress amplitude, mean stress, confining pressure and loading sequence, are also investigated with sinusoidal waveform in detail. The related numerical results have demonstrated that: 1) the loading waveform has a certain effect on rock failure processes. The square waveform has the most damage within these waveforms, while the triangle waveform has less damage than sinusoidal waveform. In each cycle, the number of microscopic cracks increases in the loading stage, while it keeps nearly constant in the unloading stage. 2) The loading frequency, stress amplitude, mean stress, confining pressure and loading sequence have considerable effects on rock damage subjected to cyclic loading. The higher the loading frequency, stress amplitude and mean stress, the greater the damage the rock accumulated; in contrast, the lower the confining pressure, the greater the damage the rock has accumulated. 3) There is a threshold value of mean stress and stress amplitude, below which no further damage accumulated after the first few cycle loadings. 4) The high-to-low loading sequence has more damage than the low-to-high loading sequence, suggesting that the rock damage is loading-path dependent. 展开更多
关键词 rock damage failure process crack initiation and propagation loading waveform cycle loading particle simulation method
下载PDF
A liquid loading prediction method of gas pipeline based on machine learning 被引量:3
15
作者 Bing-Yuan Hong Sheng-Nan Liu +5 位作者 Xiao-Ping Li Di Fan Shuai-Peng Ji Si-Hang Chen Cui-Cui Li Jing Gong 《Petroleum Science》 SCIE CAS CSCD 2022年第6期3004-3015,共12页
The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mech... The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mechanism models are semi-empirical models,and have to be resolved under different working conditions with complex calculation process.The development of big data technology and artificial intelligence provides the possibility to establish data-driven models.This paper aims to establish a liquid loading prediction model for natural gas pipeline with high generalization ability based on machine learning.First,according to the characteristics of actual gas pipeline,a variety of reasonable combinations of working conditions such as different gas velocity,pipe diameters,water contents and outlet pressures were set,and multiple undulating pipeline topography with different elevation differences was established.Then a large number of simulations were performed by simulator OLGA to obtain the data required for machine learning.After data preprocessing,six supervised learning algorithms,including support vector machine(SVM),decision tree(DT),random forest(RF),artificial neural network(ANN),plain Bayesian classification(NBC),and K nearest neighbor algorithm(KNN),were compared to evaluate the performance of liquid loading prediction.Finally,the RF and KNN with better performance were selected for parameter tuning and then used to the actual pipeline for liquid loading location prediction.Compared with OLGA simulation,the established data-driven model not only improves calculation efficiency and reduces workload,but also can provide technical support for gas pipeline flow assurance. 展开更多
关键词 Liquid loading Data-driven method Machine learning Gas pipeline Multiphase flow
下载PDF
A new numerical method for determining collapse load-carrying capacity of structure made of elasto-plastic material 被引量:2
16
作者 钟志鹏 任大龙 万水 《Journal of Central South University》 SCIE EI CAS 2014年第1期398-404,共7页
Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal wi... Determination of collapse load-carrying capacity of elasto-plastic material is very important in designing structure. The problem is commonly solved by elasto-plastic finite element method (FEM). In order to deal with material nonlinear problem involving strain softening problem effectively, a new numerical method-damped Newton method was proposed. The iterative schemes are discussed in detail for pure equilibrium models. In the equilibrium model, the plasticity criterion and the compatibility of the strains are verified, and the strain increment and plastic factor are treated as independent unknowns. To avoid the stiffness matrix being singularity or condition of matrix being ill, a damping factor a was introduced to adjust the value of plastic consistent parameter automatically during the iterations. According to the algorithm, the nonlinear finite element program was complied and its numerical example was calculated. The numerical results indicate that this method converges very fast for both small load steps and large load steps. Compared with those results obtained by analysis and experiment, the predicted ultimate bearing capacity from the proposed method is identical. 展开更多
关键词 damped Newton method collapse load elasto-plastic material non-linear finite element method incremental-iterativeanalysis
下载PDF
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
17
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
A Precision-Positioning Method for a High-Acceleration Low-Load Mechanism Based on Optimal Spatial and Temporal Distribution of Inertial Energy 被引量:5
18
作者 Xin Chen Youdun Bai +2 位作者 Zhijun Yang Jian Gao Gongfa Chen 《Engineering》 SCIE EI 2015年第3期391-398,共8页
High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres... High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms. 展开更多
关键词 high-acceleration low-load mechanism precision positioning spatial and temporal distribution inertial energy equivalent static loads method (ESLM) velocity planning
下载PDF
AN EXPERIMENTAL-NUMERICAL METHOD FOR MEASURING CRACK PROPAGATING VELOCITIES UNDER STRESS WAVE LOADING
19
作者 G.Y. Sha, F.C. Jiang D. Wang, D.K. Liu, and R.T.Department of Mechanical Engineering, Harbin Engineering University, Harbin 150001, ChinaShenyang National Laboratory for Materials Science, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第6期556-560,共5页
An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopki... An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopkinson bar. Deflection of loading point,dynamic load and instantaneous crack length are measured, then crack propagating velocities arecalculated. Experiments on 40Cr steel show that the results given by this method have a goodagreement with that obtained by the resistance fracture gage method. Therefore this method isfeasible for measuring crack propagating velocities under high loading rate and will have wideapplication. 展开更多
关键词 stress wave loading dynamic fracture crack propagating velocity experimental-numerical method
下载PDF
Finding the buckling load of non-uniform columns using the iteration perturbation method
20
作者 Aref Afsharfard Anooshiravan Farshidianfar 《Theoretical & Applied Mechanics Letters》 CAS 2014年第4期59-64,共6页
The aim of this study is to calculate the critical load of variable inertia columns. The example studied in this paper can be used as a paradigm for other non-uniform columns. The wavelength of equivalent vibratory sy... The aim of this study is to calculate the critical load of variable inertia columns. The example studied in this paper can be used as a paradigm for other non-uniform columns. The wavelength of equivalent vibratory system is used to calculate the critical load of the trigonometrically varied inertia column. In doing so, the equilibrium equation of the column is theoretically studied using the perturbation method. Accuracy of the calculated results is evaluated by comparing the solution with numerical results. Effect of improving the initial guess on the solution accuracy is investigated. Effects of varying parameters of the trigonometrically varied inertia and the uniformly tapered columns on their stability behavior are studied. Finally, using the so-called "perfectibility" parameter, two design goals, i.e., being lightweight and being strong, are studied for the discussed columns. 展开更多
关键词 perturbation method critical load non-uniform column perfectibility
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部