With the evolution of Global Navigation Satellite System(GNSS),new generation GNSS signals have adopted the dual-frequency multiplexing modulation techniques,which jointly modulate multiple signals located on multiple...With the evolution of Global Navigation Satellite System(GNSS),new generation GNSS signals have adopted the dual-frequency multiplexing modulation techniques,which jointly modulate multiple signals located on multiple sub-frequencies into a Wideband Multiplexed Signal(WMS).Although WMSs were proposed initially to reduce the complexity of satellite transmitters and improve the transmission efficiency of signals,their multi-component structures and wide root mean square bandwidths introduced by high-frequency subcarriers also provide the possibility to improve the GNSS ranging precision.Therefore,this paper proposes a Dual-assisted Multi-component Tracking(DMT)technique,which can not only fully use high-frequency subcarriers in WMSs,but also effectively track carrier,subcarrier,and code by jointly utilizing all components in WMS.In this paper,the tracking and ranging performances of DMT are comprehensively analyzed theoretically and by simulation and real experiments.The results show that compared with existing WMS tracking methods,DMT can achieve tracking results with lower tracking jitters and ranging results with higher precision,providing a highly advantageous solution for new generation GNSS signal processing.展开更多
This paper presents a new asymmetric hysteresis model and its application in the tracking control of piezoelectric actuators. The proposed model is based on a coupled-play operator which can avoid the conventional Pra...This paper presents a new asymmetric hysteresis model and its application in the tracking control of piezoelectric actuators. The proposed model is based on a coupled-play operator which can avoid the conventional Prandtl-Ishlinskii(CPI)model's defects, i.e., the symmetric property. The high accuracy for modeling asymmetric hysteresis is validated by comparing simulation results with experimental measurements. In order to further evaluate the performance of the proposed model in closed-loop tracking application, two different hybrid control methods which experimentally demonstrate their performance under the same operating conditions, are compared to validate that the hybrid control strategy with proposed hysteresis model can mitigate the hysteresis more effectively and achieve better tracking precision. The experimental results demonstrate that the proposed modeling and tracking control strategy can realize efficient control of piezoelectric actuator.展开更多
SVLBI (space very long baseline interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of an SVLBI satelli...SVLBI (space very long baseline interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of an SVLBI satellite. This work studies several technologies that will possibly be able to determine the orbit of a space VLBI satellite. Then, according to the types and charac- teristics of the satellite and the requirements for geodetic study and the geometry of the GNSS (GPS, GALILEO) satellite to track the space VLBI satellite, the six Keplerian elements of the SVLBI satellite (TEST-SVLBI) are determined. A program is designed to analyze the coverage area of space of different altitudes by the stations of the network, with which the tracking network of TEST-SVLBI is designed. The efficiency of tracking TEST-SVLBI by the network is studied, and the results are presented.展开更多
联合甚长基线干涉测量(very long baseline interferometry,VLBI)时延数据与转发式(orbit determination by transfer tracking,ODTT)测距数据能够有效提高地球静止轨道(geostationary earth orbit,GEO)卫星定轨精度。参照位置精度衰减...联合甚长基线干涉测量(very long baseline interferometry,VLBI)时延数据与转发式(orbit determination by transfer tracking,ODTT)测距数据能够有效提高地球静止轨道(geostationary earth orbit,GEO)卫星定轨精度。参照位置精度衰减因子(position dilution of precision,PDOP)的改变,研究不同VLBI基线时延数据与转发式测距数据的联合对GEO卫星定轨精度的改善,可为特定条件下联合观测时VLBI基线的最优选择提供参考。基于中国科学院国家授时中心宽带VLBI系统和转发式测轨系统的实测数据,开展中星12号GEO卫星的定轨试验。试验结果表明定轨精度的提高与PDOP的降低成正相关。相比于转发式单独定轨,联合VLBI系统中的喀什—三亚基线,PDOP降低了3.00,定轨精度提高了11.48%;联合VLBI系统中的吉林—喀什基线,PDOP降低了3.38,定轨精度提高了14.73%;联合VLBI系统中的吉林—三亚基线,PDOP降低了6.90,定轨精度提高了19.75%;联合VLBI系统中的吉林—三亚和吉林—喀什两条基线,PDOP降低了9.94,定轨精度提高了27.23%。展开更多
基金supported by National Natural Science Foundation of China,under Grant No.42274018National Key Research and Development Program of China under Grant No.2021YFA0716600.
文摘With the evolution of Global Navigation Satellite System(GNSS),new generation GNSS signals have adopted the dual-frequency multiplexing modulation techniques,which jointly modulate multiple signals located on multiple sub-frequencies into a Wideband Multiplexed Signal(WMS).Although WMSs were proposed initially to reduce the complexity of satellite transmitters and improve the transmission efficiency of signals,their multi-component structures and wide root mean square bandwidths introduced by high-frequency subcarriers also provide the possibility to improve the GNSS ranging precision.Therefore,this paper proposes a Dual-assisted Multi-component Tracking(DMT)technique,which can not only fully use high-frequency subcarriers in WMSs,but also effectively track carrier,subcarrier,and code by jointly utilizing all components in WMS.In this paper,the tracking and ranging performances of DMT are comprehensively analyzed theoretically and by simulation and real experiments.The results show that compared with existing WMS tracking methods,DMT can achieve tracking results with lower tracking jitters and ranging results with higher precision,providing a highly advantageous solution for new generation GNSS signal processing.
基金supported by the National Natural Science Foundation of China(51505133,61108038)the Doctoral Science Foundation of Henan Polytechnic University(60407/010)Chunhui Program of Ministry of Education of China(Z2011069)
文摘This paper presents a new asymmetric hysteresis model and its application in the tracking control of piezoelectric actuators. The proposed model is based on a coupled-play operator which can avoid the conventional Prandtl-Ishlinskii(CPI)model's defects, i.e., the symmetric property. The high accuracy for modeling asymmetric hysteresis is validated by comparing simulation results with experimental measurements. In order to further evaluate the performance of the proposed model in closed-loop tracking application, two different hybrid control methods which experimentally demonstrate their performance under the same operating conditions, are compared to validate that the hybrid control strategy with proposed hysteresis model can mitigate the hysteresis more effectively and achieve better tracking precision. The experimental results demonstrate that the proposed modeling and tracking control strategy can realize efficient control of piezoelectric actuator.
基金Funded by the National 973 Program of China (No. 2006CB701301), the National Natural Science Foundation of China(No.40774007), and the Project of University Education and Research of Hubei Province (No.20053039).
文摘SVLBI (space very long baseline interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of an SVLBI satellite. This work studies several technologies that will possibly be able to determine the orbit of a space VLBI satellite. Then, according to the types and charac- teristics of the satellite and the requirements for geodetic study and the geometry of the GNSS (GPS, GALILEO) satellite to track the space VLBI satellite, the six Keplerian elements of the SVLBI satellite (TEST-SVLBI) are determined. A program is designed to analyze the coverage area of space of different altitudes by the stations of the network, with which the tracking network of TEST-SVLBI is designed. The efficiency of tracking TEST-SVLBI by the network is studied, and the results are presented.
文摘联合甚长基线干涉测量(very long baseline interferometry,VLBI)时延数据与转发式(orbit determination by transfer tracking,ODTT)测距数据能够有效提高地球静止轨道(geostationary earth orbit,GEO)卫星定轨精度。参照位置精度衰减因子(position dilution of precision,PDOP)的改变,研究不同VLBI基线时延数据与转发式测距数据的联合对GEO卫星定轨精度的改善,可为特定条件下联合观测时VLBI基线的最优选择提供参考。基于中国科学院国家授时中心宽带VLBI系统和转发式测轨系统的实测数据,开展中星12号GEO卫星的定轨试验。试验结果表明定轨精度的提高与PDOP的降低成正相关。相比于转发式单独定轨,联合VLBI系统中的喀什—三亚基线,PDOP降低了3.00,定轨精度提高了11.48%;联合VLBI系统中的吉林—喀什基线,PDOP降低了3.38,定轨精度提高了14.73%;联合VLBI系统中的吉林—三亚基线,PDOP降低了6.90,定轨精度提高了19.75%;联合VLBI系统中的吉林—三亚和吉林—喀什两条基线,PDOP降低了9.94,定轨精度提高了27.23%。