In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is de...In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4 +r2) in the discrete L∞ -norm with time step - and mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error est...In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the p...This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.展开更多
Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal ...Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal error order for the porous media flow and a non-optimal error order for the fluid flow. In this article, we give a more rigorous of the error analysis for the fluid flow and obtain the optimal error estimates of the velocity and the pressure.展开更多
The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from comput...The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.展开更多
We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpol...We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpolation operator ink is introduced.With the help of ink(not elliptic projection),the optimal error estimate in L∞(J;L2(Ω)) norm of FEM is proved.展开更多
This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines...This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.展开更多
The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satis...The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satisfy the anisotropic property. Then the optimal error estimate is obtained without the regularity assumption on the meshes.展开更多
<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the...<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>展开更多
The wide-swath method based on multi-receiver is a novel and highly accurate wide-swath method, which requires a very precise view angle. The estimated angle has error because of the atmosphere refraction, angle error...The wide-swath method based on multi-receiver is a novel and highly accurate wide-swath method, which requires a very precise view angle. The estimated angle has error because of the atmosphere refraction, angle error of view and target height. A method is proposed in this paper to estimate the angle error from the return signal. The method makes use of the relationship between the view angle error and the signal correlation of the subswaths to estimate the angle error. The precision of this method is analyzed by the law of great number and it turns out to be in direct proportion to the root square number of averaging. The simulation result is given and the angle precision is 0.025°.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
Error estimates of Galerkin method for Kuramoto-Sivashingsky (K-S) equation in space dimension ≥3 are derived in the paper. These results furnish strong evidence for the computation of the solutions.
In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of ti...In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.展开更多
In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is establ...In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is established .for Halley’s iteration in Banach spaces.展开更多
Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the ...Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.展开更多
In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are prove...In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.展开更多
In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimati...In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.展开更多
文摘In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4 +r2) in the discrete L∞ -norm with time step - and mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金supported by National Natural Science Foundation of China (11071226 11201122)
文摘In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
文摘This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.
基金Subsidized by NSFC(11571274 and 11171269)the Ph.D.Programs Foundation of Ministry of Education of China(20110201110027)
文摘Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal error order for the porous media flow and a non-optimal error order for the fluid flow. In this article, we give a more rigorous of the error analysis for the fluid flow and obtain the optimal error estimates of the velocity and the pressure.
文摘The subject of this work is to propose adaptive finite element methods based on an optimal maximum norm error control estimate.Using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions,the proposed procedures are analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that they generate the correct type of refinement and lead to the desired control under consideration.
基金This research is supported by the Foundation for Talents for Next Century of Shandong University
文摘We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpolation operator ink is introduced.With the help of ink(not elliptic projection),the optimal error estimate in L∞(J;L2(Ω)) norm of FEM is proved.
基金supported in part by the National Natural Science Foundation of China(61933007, U21A2019, 62273005, 62273088, 62303301)the Program of Shanghai Academic/Technology Research Leader of China (20XD1420100)+2 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Natural Science Foundation of Anhui Province of China (2108085MA07)the Alexander von Humboldt Foundation of Germany。
文摘This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme.
基金the Henan Natural Science Foundation(072300410320)the Henan Education Department Foundational Study Foundation(200510460311)
文摘The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satisfy the anisotropic property. Then the optimal error estimate is obtained without the regularity assumption on the meshes.
文摘<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>
文摘The wide-swath method based on multi-receiver is a novel and highly accurate wide-swath method, which requires a very precise view angle. The estimated angle has error because of the atmosphere refraction, angle error of view and target height. A method is proposed in this paper to estimate the angle error from the return signal. The method makes use of the relationship between the view angle error and the signal correlation of the subswaths to estimate the angle error. The precision of this method is analyzed by the law of great number and it turns out to be in direct proportion to the root square number of averaging. The simulation result is given and the angle precision is 0.025°.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
文摘Error estimates of Galerkin method for Kuramoto-Sivashingsky (K-S) equation in space dimension ≥3 are derived in the paper. These results furnish strong evidence for the computation of the solutions.
基金This work was supported by Natural Science Foundation of China and Shandong Province.
文摘In this paper we introduce two kinds of parallel Schwarz domain decomposition me thods for general, selfadjoint, second order parabolic equations and study the dependence of their convergence rates on parameters of time-step and space-mesh. We prove that the, approximate solution has convergence independent of iteration times at each time-level. And the L^2 error estimates are given.
基金Jointly supported by China Major Key Project for Basic Researcher and Provincial Natrual Science Foundation.
文摘In this paper we give an almost sharp error estimate of Halley’s iteration for the majorizing sequence. Compared with the corresponding results in [6,14], it is far better. Meanwhile,the convergence theorem is established .for Halley’s iteration in Banach spaces.
文摘Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.
文摘In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.
文摘In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.