期刊文献+
共找到174,747篇文章
< 1 2 250 >
每页显示 20 50 100
Attention Markets of Blockchain-Based Decentralized Autonomous Organizations 被引量:1
1
作者 Juanjuan Li Rui Qin +3 位作者 Sangtian Guan Wenwen Ding Fei Lin Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1370-1380,共11页
The attention is a scarce resource in decentralized autonomous organizations(DAOs),as their self-governance relies heavily on the attention-intensive decision-making process of“proposal and voting”.To prevent the ne... The attention is a scarce resource in decentralized autonomous organizations(DAOs),as their self-governance relies heavily on the attention-intensive decision-making process of“proposal and voting”.To prevent the negative effects of pro-posers’attention-capturing strategies that contribute to the“tragedy of the commons”and ensure an efficient distribution of attention among multiple proposals,it is necessary to establish a market-driven allocation scheme for DAOs’attention.First,the Harberger tax-based attention markets are designed to facilitate its allocation via continuous and automated trading,where the individualized Harberger tax rate(HTR)determined by the pro-posers’reputation is adopted.Then,the Stackelberg game model is formulated in these markets,casting attention to owners in the role of leaders and other competitive proposers as followers.Its equilibrium trading strategies are also discussed to unravel the intricate dynamics of attention pricing.Moreover,utilizing the single-round Stackelberg game as an illustrative example,the existence of Nash equilibrium trading strategies is demonstrated.Finally,the impact of individualized HTR on trading strategies is investigated,and results suggest that it has a negative correlation with leaders’self-accessed prices and ownership duration,but its effect on their revenues varies under different conditions.This study is expected to provide valuable insights into leveraging attention resources to improve DAOs’governance and decision-making process. 展开更多
关键词 attention decentralized autonomous organizations Harberger tax Stackelberg game.
下载PDF
Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe_(4)
2
作者 刘清馨 付阳 +4 位作者 丁鹏飞 马欢 郭朋杰 雷和畅 王善才 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期146-151,共6页
Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for t... Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for type-II Weyl semimetal.We demonstrate the presence of several Fermi arcs connecting their corresponding Weyl points on both termination surfaces of the topological material.Our analysis reveals the existence of Dirac points,in addition to Weyl points,giving both theoretical and experimental evidences of the coexistence of Dirac and Weyl points in a single material.These findings not only confirm NbIrTe_(4) as a unique topological semimetal but also open avenues for exploring novel electronic devices based on its coexisting Dirac and Weyl fermions. 展开更多
关键词 Fermi arc Weyl point Dirac point angle-resolved photoemission spectroscopy
下载PDF
Main focus of parents of children with attention deficit hyperactivity disorder and the effectiveness of early clinical screening
3
作者 Jia-Wen Li Ke Gao +1 位作者 Xiao-Yun Yang Zhi-Fei Li 《World Journal of Clinical Cases》 SCIE 2024年第19期3752-3759,共8页
BACKGROUND Attention deficit hyperactivity disorder(ADHD)is a common mental and behavioral disorder among children.AIM To explore the focus of attention deficit hyperactivity disorder parents and the effectiveness of ... BACKGROUND Attention deficit hyperactivity disorder(ADHD)is a common mental and behavioral disorder among children.AIM To explore the focus of attention deficit hyperactivity disorder parents and the effectiveness of early clinical screening METHODS This study found that the main directions of parents seeking medical help were short attention time for children under 7 years old(16.6%)and poor academic performance for children over 7 years old(12.1%).We employed a two-stage experiment to diagnose ADHD.Among the 5683 children evaluated from 2018 to 2021,360 met the DSM-5 criteria.Those diagnosed with ADHD underwent assessments for letter,number,and figure attention.Following the exclusion of ADHD-H diagnoses,the detection rate rose to 96.0%,with 310 out of 323 cases identified.RESULTS This study yielded insights into the primary concerns of parents regarding their children's symptoms and validated the efficacy of a straightforward diagnostic test,offering valuable guidance for directing ADHD treatment,facilitating early detection,and enabling timely intervention.Our research delved into the predominant worries of parents across various age groups.Furthermore,we showcased the precision of the simple exclusion experiment in discerning between ADHD-I and ADHD-C in children.CONCLUSION Our study will help diagnose and guide future treatment directions for ADHD. 展开更多
关键词 attention deficit hyperactivity disorder CHILDREN PARENTS Direction of attention Simple test
下载PDF
Causal temporal graph attention network for fault diagnosis of chemical processes
4
作者 Jiaojiao Luo Zhehao Jin +3 位作者 Heping Jin Qian Li Xu Ji Yiyang Dai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期20-32,共13页
Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches... Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches with excellent performance are widely used for FDD in chemical processes.However,improved predictive accuracy has often been achieved through increased model complexity,which turns models into black-box methods and causes uncertainty regarding their decisions.In this study,a causal temporal graph attention network(CTGAN)is proposed for fault diagnosis of chemical processes.A chemical causal graph is built by causal inference to represent the propagation path of faults.The attention mechanism and chemical causal graph were combined to help us notice the key variables relating to fault fluctuations.Experiments in the Tennessee Eastman(TE)process and the green ammonia(GA)process showed that CTGAN achieved high performance and good explainability. 展开更多
关键词 Chemical processes Safety Fault diagnosis Causal discovery attention mechanism Explainability
下载PDF
Automatic recognition of landslides based on YOLOv7 and attention mechanism
5
作者 SONG Yewei GUO Jie +2 位作者 WU Gaofeng MA Fengshan LI Fangrui 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2681-2695,共15页
Landslide disasters comprise the majority of geological incidents on slopes,posing severe threats to the safety of human lives and property while exerting a significant impact on the geological environment.The rapid i... Landslide disasters comprise the majority of geological incidents on slopes,posing severe threats to the safety of human lives and property while exerting a significant impact on the geological environment.The rapid identification of landslides is important for disaster prevention and control;however,currently,landslide identification relies mainly on the manual interpretation of remote sensing images.Manual interpretation and feature recognition methods are time-consuming,labor-intensive,and challenging when confronted with complex scenarios.Consequently,automatic landslide recognition has emerged as a pivotal avenue for future development.In this study,a dataset comprising 2000 landslide images was constructed using open-source remote sensing images and datasets.The YOLOv7 model was enhanced using data augmentation algorithms and attention mechanisms.Three optimization models were formulated to realize automatic landslide recognition.The findings demonstrate the commendable performance of the optimized model in automatic landslide recognition,achieving a peak accuracy of 95.92%.Subsequently,the optimized model was applied to regional landslide identification,co-seismic landslide identification,and landslide recognition at various scales,all of which showed robust recognition capabilities.Nevertheless,the model exhibits limitations in detecting small targets,indicating areas for refining the deep-learning algorithms.The results of this research offer valuable technical support for the swift identification,prevention,and mitigation of landslide disasters. 展开更多
关键词 Deep learning Landslide detection Natural disasters attention mechanism Remote sensing
下载PDF
An Attention-Based Approach to Enhance the Detection and Classification of Android Malware
6
作者 Abdallah Ghourabi 《Computers, Materials & Continua》 SCIE EI 2024年第8期2743-2760,共18页
The dominance of Android in the global mobile market and the open development characteristics of this platform have resulted in a significant increase in malware.These malicious applications have become a serious conc... The dominance of Android in the global mobile market and the open development characteristics of this platform have resulted in a significant increase in malware.These malicious applications have become a serious concern to the security of Android systems.To address this problem,researchers have proposed several machine-learning models to detect and classify Android malware based on analyzing features extracted from Android samples.However,most existing studies have focused on the classification task and overlooked the feature selection process,which is crucial to reduce the training time and maintain or improve the classification results.The current paper proposes a new Android malware detection and classification approach that identifies the most important features to improve classification performance and reduce training time.The proposed approach consists of two main steps.First,a feature selection method based on the Attention mechanism is used to select the most important features.Then,an optimized Light Gradient Boosting Machine(LightGBM)classifier is applied to classify the Android samples and identify the malware.The feature selection method proposed in this paper is to integrate an Attention layer into a multilayer perceptron neural network.The role of the Attention layer is to compute the weighted values of each feature based on its importance for the classification process.Experimental evaluation of the approach has shown that combining the Attention-based technique with an optimized classification algorithm for Android malware detection has improved the accuracy from 98.64%to 98.71%while reducing the training time from 80 to 28 s. 展开更多
关键词 Android malware malware detection feature selection attention mechanism LightGBM mobile security
下载PDF
The Short-Term Prediction ofWind Power Based on the Convolutional Graph Attention Deep Neural Network
7
作者 Fan Xiao Xiong Ping +4 位作者 Yeyang Li Yusen Xu Yiqun Kang Dan Liu Nianming Zhang 《Energy Engineering》 EI 2024年第2期359-376,共18页
The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key... The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale.Therefore,wind power forecasting plays a key role in improving the safety and economic benefits of the power grid.This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data.Based on the graph attention network and attention mechanism,the method extracts spatial-temporal characteristics from the data of multiple wind farms.Then,combined with a deep neural network,a convolutional graph attention deep neural network model is constructed.Finally,the model is trained with the quantile regression loss function to achieve the wind power deterministic and probabilistic prediction based on multi-wind farm spatial-temporal data.A wind power dataset in the U.S.is taken as an example to demonstrate the efficacy of the proposed model.Compared with the selected baseline methods,the proposed model achieves the best prediction performance.The point prediction errors(i.e.,root mean square error(RMSE)and normalized mean absolute percentage error(NMAPE))are 0.304 MW and 1.177%,respectively.And the comprehensive performance of probabilistic prediction(i.e.,con-tinuously ranked probability score(CRPS))is 0.580.Thus,the significance of multi-wind farm data and spatial-temporal feature extraction module is self-evident. 展开更多
关键词 Format wind power prediction deep neural network graph attention network attention mechanism quantile regression
下载PDF
An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism
8
作者 Zhijun Guo Yun Sun +2 位作者 YingWang Chaoqi Fu Jilong Zhong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2375-2398,共24页
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne... Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution. 展开更多
关键词 RESILIENCE cooperative mission FANET spatio-temporal node pooling multi-head attention graph network
下载PDF
Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
9
作者 段东立 毕菲菲 +3 位作者 李思凡 吴成星 吕长春 蔡志强 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期173-180,共8页
Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances,which is always called resilience.However,once the external disturbances exceed the tipping points of the system... Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances,which is always called resilience.However,once the external disturbances exceed the tipping points of the system resilience,the consequences would be catastrophic,and eventually lead the ecosystem to complete collapse.We capture the collapse process of ecosystems represented by plant-pollinator networks with the k-core nested structural method,and find that a sufficiently weak interaction strength or a sufficiently large competition weight can cause the structure of the ecosystem to collapse from its smallest k-core towards its largest k-core.Then we give the tipping points of structure and dynamic collapse of the entire system from the one-dimensional dynamic function of the ecosystem.Our work provides an intuitive and precise description of the dynamic process of ecosystem collapse under multiple interactions,and provides theoretical insights into further avoiding the occurrence of ecosystem collapse. 展开更多
关键词 complex networks tipping points dimension reduction k-core
下载PDF
An Assisted Diagnosis of Alzheimer’s Disease Incorporating Attention Mechanisms Med-3D Transfer Modeling
10
作者 Yanmei Li Jinghong Tang +3 位作者 Weiwu Ding Jian Luo Naveed Ahmad Rajesh Kumar 《Computers, Materials & Continua》 SCIE EI 2024年第1期713-733,共21页
Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clin... Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice.In this study,we introduce an advanced diagnostic methodology rooted in theMed-3D transfermodel and enhanced with an attention mechanism.We aim to improve the precision of AD diagnosis and facilitate its early identification.Initially,we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation,which are commonly observed in imaging datasets.Subsequently,an attention mechanism is incorporated to selectively focus on the salient features within the imaging data.Building upon this foundation,we present the novelMed-3D transfermodel,designed to further elucidate and amplify the intricate features associated withADpathogenesis.Our proposedmodel has demonstrated promising results,achieving a classification accuracy of 92%.To emphasize the robustness and practicality of our approach,we introduce an adaptive‘hot-updating’auxiliary diagnostic system.This system not only enables continuous model training and optimization but also provides a dynamic platform to meet the real-time diagnostic and therapeutic demands of AD. 展开更多
关键词 Alzheimer’s disease channel attention Med-3D hot update
下载PDF
Triple points and phase transitions of D-dimensional dyonic Ad S black holes with quasitopological electromagnetism in Einstein–Gauss–Bonnet gravity
11
作者 牟平辉 蒋青权 +1 位作者 何柯腱 李国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期272-287,共16页
By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnet... By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnetism in Einstein–Gauss–Bonnet(EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals(vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions.Specifically, it shows for D = 6 that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic Ad S BHs with quasitopological electromagnetism in Einstein–Born–Infeld(EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [Phys. Rev. D105 104048(2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic Ad S BHs with quasitopological electromagnetism in EGB gravity. 展开更多
关键词 AdS black hole phase transition triple point
下载PDF
Petrophysical Evaluation of Cape Three Points Reservoirs
12
作者 Striggner Bedu-Addo Sylvester Kojo Danuor Larry Pax Chegbeleh 《International Journal of Geosciences》 CAS 2024年第2期162-179,共18页
The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and T... The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and Techlog. The investigated characteristics, which were all deduced from geophysical wire-line logs, include lithology, porosity, permeability, fluid saturation, and net to gross thickness. To characterise the reservoir on the field, a suite of wire-line logs including gamma ray, resistivity, spontaneous potential, and density logs for three wells (WELL_1X, WELL_2X, and WELL_3X) from the Tano Cape Three Point basin were studied. The analyses that were done included lithology delineation, reservoir identification, and petrophysical parameter determination for the identified reservoirs. The tops and bases of the three wells analysed were marked at a depth of 1203.06 - 2015.64 m, 3863.03 - 4253.85 m and 2497.38 - 2560.32 m respectively. There were no hydrocarbons in the reservoirs from the studies. The petrophysical parameters computed for each reservoir provided porosities of 13%, 3% and 11% respectively. The water saturation also determined for these three wells (WELL_1X, WELL_2X and WELL_3X) were 94%, 95% and 89% respectively. These results together with the behaviour of the density and neutron logs suggested that these wells are wildcat wells. 展开更多
关键词 Petrophysical Cape Three points RESERVOIRS
下载PDF
Fusion of Convolutional Self-Attention and Cross-Dimensional Feature Transformationfor Human Posture Estimation
13
作者 Anzhan Liu Yilu Ding Xiangyang Lu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期346-360,共15页
Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which ... Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation. 展开更多
关键词 human posture estimation adaptive fusion method cross-dimensional interaction attention module high-resolution network
下载PDF
HybridGAD: Identification of AI-Generated Radiology Abstracts Based on a Novel Hybrid Model with Attention Mechanism
14
作者 TugbaÇelikten Aytug Onan 《Computers, Materials & Continua》 SCIE EI 2024年第8期3351-3377,共27页
Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well a... Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications. 展开更多
关键词 Generative artificial intelligence AI-generated text detection attention mechanism hybrid model for text classification
下载PDF
Carbon Emission Factors Prediction of Power Grid by Using Graph Attention Network
15
作者 Xin Shen Jiahao Li +3 位作者 YujunYin Jianlin Tang Weibin Lin Mi Zhou 《Energy Engineering》 EI 2024年第7期1945-1961,共17页
Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice,which is of immense importance in mobilizing the entire society to reduce carbon emissions.The method of calcul... Advanced carbon emission factors of a power grid can provide users with effective carbon reduction advice,which is of immense importance in mobilizing the entire society to reduce carbon emissions.The method of calculating node carbon emission factors based on the carbon emissions flow theory requires real-time parameters of a power grid.Therefore,it cannot provide carbon factor information beforehand.To address this issue,a prediction model based on the graph attention network is proposed.The model uses a graph structure that is suitable for the topology of the power grid and designs a supervised network using the loads of the grid nodes and the corresponding carbon factor data.The network extracts features and transmits information more suitable for the power system and can flexibly adjust the equivalent topology,thereby increasing the diversity of the structure.Its input and output data are simple,without the power grid parameters.We demonstrated its effect by testing IEEE-39 bus and IEEE-118 bus systems with average error rates of 2.46%and 2.51%. 展开更多
关键词 Predict carbon factors graph attention network prediction algorithm power grid operating parameters
下载PDF
MicroRNAs as potential biomarkers for diagnosis of attention deficit hyperactivity disorder
16
作者 Bridget Martinez Philip V.Peplow 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期557-562,共6页
Inappropriate levels of hyperactivity,impulsivity,and inattention characterize attention deficit hyperactivity disorder,a common childhood-onset neuropsychiatric disorder.The cognitive function and learning ability of... Inappropriate levels of hyperactivity,impulsivity,and inattention characterize attention deficit hyperactivity disorder,a common childhood-onset neuropsychiatric disorder.The cognitive function and learning ability of children with attention deficit hyperactivity disorder are affected,and these symptoms may persist to adulthood if they are not treated.The diagnosis of attention deficit hyperactivity disorder is only based on symptoms and objective tests for attention deficit hyperactivity disorder are missing.Treatments for attention deficit hyperactivity disorder in children include medications,behavior therapy,counseling,and education services which can relieve many of the symptoms of attention deficit hyperactivity disorder but cannot cure it.There is a need for a molecular biomarker to distinguish attention deficit hyperactivity disorder from healthy subjects and other neurological conditions,which would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated.Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of attention deficit hyperactivity disorder.The recent studies reviewed had performed microRNA profiling in whole blood,white blood cells,blood plasma,and blood serum of children with attention deficit hyperactivity disorder.A large number of microRNAs were dysregulated when compared to healthy controls and with some overlap between individual studies.From the studies that had included a validation set of patients and controls,potential candidate biomarkers for attention deficit hyperactivity disorder in children could be miR-140-3p,let-7g-5p,-30e-5p,-223-3p,-142-5p,-486-5p,-151a-3p,-151a-5p,and-126-5p in total white blood cells,and miR-4516,-6090,-4763-3p,-4281,-4466,-101-3p,-130a-3p,-138-5p,-195-5p,and-106b-5p in blood serum.Further studies are warranted with children and adults with attention deficit hyperactivity disorder,and consideration should be given to utilizing rat models of attention deficit hyperactivity disorder.Animal studies could be used to confirm microRNA findings in human patients and to test the effects of targeting specific microRNAs on disease progression and behavior. 展开更多
关键词 ADULTS attention deficit hyperactivity disorder biomarkers blood plasma blood serum CHILDREN MICRORNA total white blood cells whole blood
下载PDF
Nutritional epigenetics education improves diet and attitude of parents of children with autism or attention deficit/hyperactivity disorder
17
作者 Renee J Dufault Katherine M Adler +2 位作者 David O Carpenter Steven G Gilbert Raquel A Crider 《World Journal of Psychiatry》 SCIE 2024年第1期159-178,共20页
BACKGROUND Unhealthy maternal diet leads to heavy metal exposures from the consumption of ultra-processed foods that may impact gene behavior across generations,creating conditions for the neurodevelopmental disorders... BACKGROUND Unhealthy maternal diet leads to heavy metal exposures from the consumption of ultra-processed foods that may impact gene behavior across generations,creating conditions for the neurodevelopmental disorders known as autism and attention deficit/hyperactivity disorder(ADHD).Children with these disorders have difficulty metabolizing and excreting heavy metals from their bloodstream,and the severity of their symptoms correlates with the heavy metal levels measured in their blood.Psychiatrists may play a key role in helping parents reduce their ultra-processed food and dietary heavy metal intake by providing access to effective nutritional epigenetics education.AIM To test the efficacy of nutritional epigenetics instruction in reducing parental ultra-processed food intake.METHODS The study utilized a semi-randomized test and control group pretest-posttest pilot study design with participants recruited from parents having a learning-disabled child with autism or ADHD.Twenty-two parents who met the inclusion criteria were randomly selected to serve in the test(n=11)or control(n=11)group.The test group participated in the six-week online nutritional epigenetics tutorial,while the control group did not.The efficacy of the nutritional epigenetics instruction was determined by measuring changes in parent diet and attitude using data derived from an online diet survey administered to the participants during the pre and post intervention periods.Diet intake scores were derived for both ultra-processed and whole/organic foods.Paired sample t-tests were conducted to determine any differences in mean diet scores within each group.RESULTS There was a significant difference in the diet scores of the test group between the pre-and post-intervention periods.The parents in the test group significantly reduced their intake of ultra-processed foods with a preintervention diet score of 70(mean=5.385,SD=2.534)and a post-intervention diet score of 113(mean=8.692,SD=1.750)and the paired t-test analysis showing a significance of P<0.001.The test group also significantly increased their consumption of whole and/or organic foods with a pre-intervention diet score of 100(mean=5.882,SD=2.472)and post-intervention diet score of 121(mean=7.118,SD=2.390)and the paired t-test analysis showing a significance of P<0.05.CONCLUSION Here we show nutritional epigenetics education can be used to reduce ultra-processed food intake and improve attitude among parents having learning-disabled children with autism or ADHD. 展开更多
关键词 EPIGENOMICS Parenteral nutrition AUTISM attention deficit/hyperactivity disorder Ultra-processed foods Heavy metals
下载PDF
New Fusion Approach of Spatial and Channel Attention for Semantic Segmentation of Very High Spatial Resolution Remote Sensing Images
18
作者 Armand Kodjo Atiampo Gokou Hervé Fabrice Diédié 《Open Journal of Applied Sciences》 2024年第2期288-319,共32页
The semantic segmentation of very high spatial resolution remote sensing images is difficult due to the complexity of interpreting the interactions between the objects in the scene. Indeed, effective segmentation requ... The semantic segmentation of very high spatial resolution remote sensing images is difficult due to the complexity of interpreting the interactions between the objects in the scene. Indeed, effective segmentation requires considering spatial local context and long-term dependencies. To address this problem, the proposed approach is inspired by the MAC-UNet network which is an extension of U-Net, densely connected combined with channel attention. The advantages of this solution are as follows: 4) The new model introduces a new attention called propagate attention to build an attention-based encoder. 2) The fusion of multi-scale information is achieved by a weighted linear combination of the attentions whose coefficients are learned during the training phase. 3) Introducing in the decoder, the Spatial-Channel-Global-Local block which is an attention layer that uniquely combines channel attention and spatial attention locally and globally. The performances of the model are evaluated on 2 datasets WHDLD and DLRSD and show results of mean intersection over union (mIoU) index in progress between 1.54% and 10.47% for DLRSD and between 1.04% and 4.37% for WHDLD compared with the most efficient algorithms with attention mechanisms like MAU-Net and transformers like TMNet. 展开更多
关键词 Spatial-Channel attention Super-Token Segmentation Self-attention Vision Transformer
下载PDF
Enhancement of Visual Attention by Color Revealed Using Electroencephalography
19
作者 Moemi Matsuo Takashi Higuchi +3 位作者 Takuya Ishibashi Ayano Egashira Toranosuke Abe Hiroya Miyabara 《Open Journal of Therapy and Rehabilitation》 2024年第1期1-9,共9页
Attention constitutes a fundamental psychological feature guiding our mental effort toward specific objects, concurrent with processes such as memory, reasoning, and imagination. Visual attention, crucial for selectin... Attention constitutes a fundamental psychological feature guiding our mental effort toward specific objects, concurrent with processes such as memory, reasoning, and imagination. Visual attention, crucial for selecting surrounding information, often decreases in older adults and patients with cerebrovascular disorders. Effective methods to enhance attention are scarce. Here, we investigated whether color information influences visual attention and brain activity during task performance, utilizing EEG. We examined 13 healthy young adults (seven women and six men;mean age: 21.2 ± 0.58 years) using 19-electrode electroencephalograms to assess the impact of color information on visual attention. The Clinical Assessment for Attention cancellation test was conducted under the black, red, and blue color conditions. Wilcoxon’s signed-rank test was used to assess differences in task performance (task time and error) between conditions. Spearman’s rank correlation was utilized to examine the correlation in power levels between task performance and color conditions. Significant variations in total task errors were observed among color conditions. The black condition exhibited the highest error frequency (0.7 ± 0.9 times), followed by the red condition (0.5 ± 0.8 times), with the lowest error frequency occurring in the blue (0.2 ± 0.4 times) condition (black vs. red: P = 0.03;black vs. blue: P = 0.00;red vs. blue: P = 0.032). No time difference was observed. The black condition showed negative delta and high-gamma correlations in the central electrodes. The red condition revealed positive alpha and low-gamma correlations in the frontal and occipital areas. Although no correlations were observed in the blue condition, it enhanced attentional performance. Positive alpha and low-gamma waves might be crucial for spotting attentional errors in key areas. Our findings provide insights into the effects of color information on visual attention and potential neural correlates associated with attentional processes. In conclusion, our study implies a connection between color information and attentional task performance, with blue font associated with the most accurate performance. 展开更多
关键词 attention Higher Brain Function ELECTROENCEPHALOGRAPHY NEUROIMAGING REHABILITATION
下载PDF
Posture Detection of Heart Disease Using Multi-Head Attention Vision Hybrid(MHAVH)Model
20
作者 Hina Naz Zuping Zhang +3 位作者 Mohammed Al-Habib Fuad A.Awwad Emad A.A.Ismail Zaid Ali Khan 《Computers, Materials & Continua》 SCIE EI 2024年第5期2673-2696,共24页
Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may ... Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications. 展开更多
关键词 Image analysis posture of heart attack(PHA)detection hybrid features VGG-16 ResNet-50 vision transformer advance multi-head attention layer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部