Upwind algorithms are becoming progressively popular for river flood routing due to their capability of resolving trans-critical flow regimes. For consistency, these algorithms suggest natural upwind discretization of...Upwind algorithms are becoming progressively popular for river flood routing due to their capability of resolving trans-critical flow regimes. For consistency, these algorithms suggest natural upwind discretization of the source term, which may be essential for natural channels with irregular geometry. Yet applications of these upwind algorithms to natural river flows are rare, and in such applications the traditional and simpler pointwise, rather than upwind discretization of the source term is used. Within the framework of a first-order upwind algorithm, this paper presents a comparison of upwind and pointwise discretizations of the source term. Numerical simulations were carried out for a selected irregular channel comprising a pool-riffle sequence Jn the River Lune, England with observed data. It is Shown that the impact of pointwise discretization, compared to the upwind, is appreciable mainly in flow zones with the Froude number closer to or larger than unity. The discrepancy due to pointwise and upwind discretizations of the source term is negligible in flow depth and hence in water surface elevation, but well manifested in mean velocity and derived flow quantities. Also the occurrence of flow reversal and equalisation over the pool-riffle sequence in response to increasing discharges is demonstrated.展开更多
Double sequences have some unexpected properties which derive from the possibility of commuting limit operations. For example, may be defined so that the iterated limits and exist and are equal for all x, and ye...Double sequences have some unexpected properties which derive from the possibility of commuting limit operations. For example, may be defined so that the iterated limits and exist and are equal for all x, and yet the Pringsheim limit does not exist. The sequence is a classic example used to show that the iterated limit of a double sequence of continuous functions may exist, but result in an everywhere discontinuous limit. We explore whether the limit of this sequence in the Pringsheim sense equals the iterated result and derive an interesting property of cosines as a byproduct.展开更多
基金Project supported by the Open Research Fund of the State Key Laboratory of Water Resources and Hydropower Engineering Science, and the National Natural Science Foundation of China (Grant No: 50459001).
文摘Upwind algorithms are becoming progressively popular for river flood routing due to their capability of resolving trans-critical flow regimes. For consistency, these algorithms suggest natural upwind discretization of the source term, which may be essential for natural channels with irregular geometry. Yet applications of these upwind algorithms to natural river flows are rare, and in such applications the traditional and simpler pointwise, rather than upwind discretization of the source term is used. Within the framework of a first-order upwind algorithm, this paper presents a comparison of upwind and pointwise discretizations of the source term. Numerical simulations were carried out for a selected irregular channel comprising a pool-riffle sequence Jn the River Lune, England with observed data. It is Shown that the impact of pointwise discretization, compared to the upwind, is appreciable mainly in flow zones with the Froude number closer to or larger than unity. The discrepancy due to pointwise and upwind discretizations of the source term is negligible in flow depth and hence in water surface elevation, but well manifested in mean velocity and derived flow quantities. Also the occurrence of flow reversal and equalisation over the pool-riffle sequence in response to increasing discharges is demonstrated.
文摘Double sequences have some unexpected properties which derive from the possibility of commuting limit operations. For example, may be defined so that the iterated limits and exist and are equal for all x, and yet the Pringsheim limit does not exist. The sequence is a classic example used to show that the iterated limit of a double sequence of continuous functions may exist, but result in an everywhere discontinuous limit. We explore whether the limit of this sequence in the Pringsheim sense equals the iterated result and derive an interesting property of cosines as a byproduct.