A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous H...A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.展开更多
In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depend...In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depends both of independent variables. The idea of the immersed interface method is applied to deal with the discontinuities in the wave number and certain derivatives of the solution. Numerical experiments are included to confirm the accuracy and efficiency of the proposed method.展开更多
The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method(F...The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method(FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.展开更多
A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution f...A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier–Stokes equations, including contribution of chemical reaction, via the Chapman–Enskog expansion.For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed.展开更多
文摘A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.
文摘In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depends both of independent variables. The idea of the immersed interface method is applied to deal with the discontinuities in the wave number and certain derivatives of the solution. Numerical experiments are included to confirm the accuracy and efficiency of the proposed method.
文摘The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method(FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.
基金support of the Science Foundations of National Key Laboratory of Computational Physics,National Natural Science Foundation of China under Grant No.11202003the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) under Grant No.KFJJ14-1M.YL +1 种基金support of National Natural Science Foundation of China under Grant Nos.11074300 and 41472130National Basic Research Program of China under Grant No.2013CBA01504
文摘A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier–Stokes equations, including contribution of chemical reaction, via the Chapman–Enskog expansion.For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed.