Phospholipase D (PLD) exerts broad biological functions in eukaryotes through regulating downstream effectors by its product, phosphatidic acid (PA). Protein kinases and phosphatases, such as mammalian target of r...Phospholipase D (PLD) exerts broad biological functions in eukaryotes through regulating downstream effectors by its product, phosphatidic acid (PA). Protein kinases and phosphatases, such as mammalian target of rapa- mycin (mTOR), Protein Phosphatase 1 (PP1) and Protein Phosphatase 2C (PP2C), are PA-binding proteins that execute crucial regulatory functions in both animals and plants. PA participates in many signaling pathways by modulating the enzymatic activity and/or subcellular localization of bound proteins. In this study, we demonstrated that PLD-derived PA interacts with the scaffolding A1 subunit of Protein Phosphatase 2A (PP2A) and regulates PP2A-mediated PIN1 dephos- phorylation in Arabidopsis. Genetic and pharmacological studies showed that both PA and PP2A participate in the regu- lation of auxin distribution. In addition, both the phosphorylation status and polar localization of PIN1 protein were affected by PLD inhibitors, Exogenous PA triggered the membrane accumulation of PP2AA1 and enhanced the PP2A activity at membrane, while PLD inhibition resulted in the reduced endosomal localization and perinuclear aggregation of PP2AA1. These results demonstrate the important role of PLD-derived PA in normal PP2A-mediated PIN dephosphoryl- ation and reveal a novel mechanism, in which PA recruits PP2AA1 to the membrane system and regulates PP2A function on membrane-targeted proteins. As PA and PP2A are conserved among eukaryotes, other organisms might use similar mechanisms to mediate multiple biological processes.展开更多
Based on the vector angular spectrum representation of optical beam and the method of stationary phase, the analytical TE and TM terms of vector Gaussian beam have been presented in the far field. By using the local p...Based on the vector angular spectrum representation of optical beam and the method of stationary phase, the analytical TE and TM terms of vector Gaussian beam have been presented in the far field. By using the local polarization matrix, the polarization properties of the TE and TM terms in the far field are investigated, and it is found that the degree of their polarization is only determined by the spatial location. When the source is completely polarized, the TE and TM terms are both completely polarized in the far field. When the source is completely unpolarized, the TE and TM terms in the far field are partially polarized. The whole beam is also partially polarized except on the propagating axis. Moreover, the degrees of polarization of TE and TM terms are both larger than that of the whole beam.展开更多
Solar-driven H_(2)O_(2)production and emerging organic pollutants(EOPs)elimination are of great significance from the perspective of environmental sustainability.The efficiency of the photocatalytic reaction system is...Solar-driven H_(2)O_(2)production and emerging organic pollutants(EOPs)elimination are of great significance from the perspective of environmental sustainability.The efficiency of the photocatalytic reaction system is the key challenge to be addressed.In this work,the strategy of constructing surface ionic local polarization centers to enhance the exciton dissociation of the polymeric photocatalytic is demonstrated.Selected bipyridinium cation(TMAP)is complexed on a K^(+)-incorporated carbon nitride(CNK)framework,and the combination of local polarization centers both on the surface(bipyridinium cation)and bulk(K+cation)contributes to a superior photocatalytic H_(2)O_(2)production performance,affording a remarkable H_(2)O_(2)generation rate of 46.8μmol h^(-1)mg^(-1)and a high apparent quantum yield(AQY)value of 77.5%under irradiation of 405 nm photons.As substantiated experimentally by steady state/transient spectroscopy techniques,the surface local polarization centers increase the population of the long-lived trapped electrons,and thereby promote the interfacial charge transfer process for chemical conversion reaction.The strategy is potentially applicable to the design of a wide range of efficient solar-to-chemical conversion systems.展开更多
Photocatalytic aerobic oxidation reactions are largely governed by the efficiency of charge separation and subsequent reactive oxygen species(ROS) generation. Herein, we report a polarization engineering strategy to p...Photocatalytic aerobic oxidation reactions are largely governed by the efficiency of charge separation and subsequent reactive oxygen species(ROS) generation. Herein, we report a polarization engineering strategy to promote the charge separation and ROS generation efficiency by substituting the benzene unit with furan/thiophene in porous organic polymers(POPs). Benefiting from the extent of local polarization, the thiophene-containing POP(JNU-218) exhibits the best photocatalytic performance in aerobic oxidation reactions, with a yield much higher than those for the furan-containing POP(JNU-217) and the benzenecontaining POP(JNU-216). Experimental studies and theoretical calculations reveal that the increase of local polarization can indeed reduce the exciton binding energy, and therefore facilitate the separation of electron-hole pairs. This work demonstrates a viable strategy to tune charge separation and ROS generation efficiency by modulating the dipole moments of the building blocks in porous polymeric organic semiconductors.展开更多
In the past two decades, extensive studies have focused on a group of so-called polarity proteins that play conserved and essential functions in establishing and maintaining cell polarity in epithelial cells. Among th...In the past two decades, extensive studies have focused on a group of so-called polarity proteins that play conserved and essential functions in establishing and maintaining cell polarity in epithelial cells. Among them, Crumbs (Crb) is the only trans- membrane polarity protein characterized to date (Tepass et al.,展开更多
A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the p...A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.展开更多
A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system con...A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirm low optical loss and environmental stabilities.展开更多
文摘Phospholipase D (PLD) exerts broad biological functions in eukaryotes through regulating downstream effectors by its product, phosphatidic acid (PA). Protein kinases and phosphatases, such as mammalian target of rapa- mycin (mTOR), Protein Phosphatase 1 (PP1) and Protein Phosphatase 2C (PP2C), are PA-binding proteins that execute crucial regulatory functions in both animals and plants. PA participates in many signaling pathways by modulating the enzymatic activity and/or subcellular localization of bound proteins. In this study, we demonstrated that PLD-derived PA interacts with the scaffolding A1 subunit of Protein Phosphatase 2A (PP2A) and regulates PP2A-mediated PIN1 dephos- phorylation in Arabidopsis. Genetic and pharmacological studies showed that both PA and PP2A participate in the regu- lation of auxin distribution. In addition, both the phosphorylation status and polar localization of PIN1 protein were affected by PLD inhibitors, Exogenous PA triggered the membrane accumulation of PP2AA1 and enhanced the PP2A activity at membrane, while PLD inhibition resulted in the reduced endosomal localization and perinuclear aggregation of PP2AA1. These results demonstrate the important role of PLD-derived PA in normal PP2A-mediated PIN dephosphoryl- ation and reveal a novel mechanism, in which PA recruits PP2AA1 to the membrane system and regulates PP2A function on membrane-targeted proteins. As PA and PP2A are conserved among eukaryotes, other organisms might use similar mechanisms to mediate multiple biological processes.
文摘Based on the vector angular spectrum representation of optical beam and the method of stationary phase, the analytical TE and TM terms of vector Gaussian beam have been presented in the far field. By using the local polarization matrix, the polarization properties of the TE and TM terms in the far field are investigated, and it is found that the degree of their polarization is only determined by the spatial location. When the source is completely polarized, the TE and TM terms are both completely polarized in the far field. When the source is completely unpolarized, the TE and TM terms in the far field are partially polarized. The whole beam is also partially polarized except on the propagating axis. Moreover, the degrees of polarization of TE and TM terms are both larger than that of the whole beam.
基金Financial supports by the National Natural Science Foundation of China(No.21976041)Guangzhou Municipal Science and Technology Project(No.202201020168)+1 种基金Tertiary Education Scientific Research Project of Guangzhou Municipal Education Bureau(No.202235238)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010788)are acknowledged。
文摘Solar-driven H_(2)O_(2)production and emerging organic pollutants(EOPs)elimination are of great significance from the perspective of environmental sustainability.The efficiency of the photocatalytic reaction system is the key challenge to be addressed.In this work,the strategy of constructing surface ionic local polarization centers to enhance the exciton dissociation of the polymeric photocatalytic is demonstrated.Selected bipyridinium cation(TMAP)is complexed on a K^(+)-incorporated carbon nitride(CNK)framework,and the combination of local polarization centers both on the surface(bipyridinium cation)and bulk(K+cation)contributes to a superior photocatalytic H_(2)O_(2)production performance,affording a remarkable H_(2)O_(2)generation rate of 46.8μmol h^(-1)mg^(-1)and a high apparent quantum yield(AQY)value of 77.5%under irradiation of 405 nm photons.As substantiated experimentally by steady state/transient spectroscopy techniques,the surface local polarization centers increase the population of the long-lived trapped electrons,and thereby promote the interfacial charge transfer process for chemical conversion reaction.The strategy is potentially applicable to the design of a wide range of efficient solar-to-chemical conversion systems.
基金supported by the National Natural Science Foundation of China(21731002,21975104,22101099,22150004,22271120)Guangdong Major Project of Basic and Applied Research(2019B030302009)+1 种基金the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University(2022CXB007)the Fundamental Research Funds for the Central Universities and Jinan University(21621035)。
文摘Photocatalytic aerobic oxidation reactions are largely governed by the efficiency of charge separation and subsequent reactive oxygen species(ROS) generation. Herein, we report a polarization engineering strategy to promote the charge separation and ROS generation efficiency by substituting the benzene unit with furan/thiophene in porous organic polymers(POPs). Benefiting from the extent of local polarization, the thiophene-containing POP(JNU-218) exhibits the best photocatalytic performance in aerobic oxidation reactions, with a yield much higher than those for the furan-containing POP(JNU-217) and the benzenecontaining POP(JNU-216). Experimental studies and theoretical calculations reveal that the increase of local polarization can indeed reduce the exciton binding energy, and therefore facilitate the separation of electron-hole pairs. This work demonstrates a viable strategy to tune charge separation and ROS generation efficiency by modulating the dipole moments of the building blocks in porous polymeric organic semiconductors.
基金supported by the grants from the National Institutes of Health of USA(NCRR R21RR024869, NIGMS RO1GM086423 and RO1GM121534 to Y.H.)the Start-up Foundation from Nanjing Medical University (2012RC04 to J.H.)University of Pittsburgh Medical School Center for Biologic Imaging was supported by the grant 1S100D019973-01 from NIH, USA
文摘In the past two decades, extensive studies have focused on a group of so-called polarity proteins that play conserved and essential functions in establishing and maintaining cell polarity in epithelial cells. Among them, Crumbs (Crb) is the only trans- membrane polarity protein characterized to date (Tepass et al.,
基金supported by the Scientifc Research Fund of Zhejiang Provincial Education Department(No.Y201225848)the Scientifc and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2013124)
文摘A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.
基金This research is supported by a grant from FUTABA DENSHI foundation.
文摘A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirm low optical loss and environmental stabilities.