In this paper, we classify the m-ovoids of finite classical polar spaces that admit a transitive automorphism group acting irreducibly on the ambient vector space. In particular, we obtain several new infinite familie...In this paper, we classify the m-ovoids of finite classical polar spaces that admit a transitive automorphism group acting irreducibly on the ambient vector space. In particular, we obtain several new infinite families of transitive m-ovoids.展开更多
Magnetoelectric(ME)multiferroic materials have unique advantages in low-power and high-density information storage,because they can simultaneously display ferroelectricity and ferromagnetism.However,research on how to...Magnetoelectric(ME)multiferroic materials have unique advantages in low-power and high-density information storage,because they can simultaneously display ferroelectricity and ferromagnetism.However,research on how to construct air-stable highperformance ME single-molecule magnets(SMMs)is nonexistent.Herein,by introducing homochirality while reducing molecular symmetry,two doubledecker Dy(III)enantiomers adopting the polar space group P2_(1) and exhibiting excellent thermal stability were obtained.They displayed zero field SMM behavior with an anisotropy barrier(Ueff)of ca.100 cm^(−1).This work establishes a rational chemical design strategy for crystallizing SMMs in polar space groups and elucidates the direction for future research,that is,engineering small-size high-performance SMMs.展开更多
当干扰信号的空域和极化域特征与目标信号相似时,采用空极化域联合抗干扰技术在消除干扰的同时也会抑制目标信号,导致干扰对消后信干噪比(signal to interference plus noise ratio,SINR)低于雷达系统需求,从而形成干扰对消盲区。针对...当干扰信号的空域和极化域特征与目标信号相似时,采用空极化域联合抗干扰技术在消除干扰的同时也会抑制目标信号,导致干扰对消后信干噪比(signal to interference plus noise ratio,SINR)低于雷达系统需求,从而形成干扰对消盲区。针对这一现象,通过在空域、极化域与空极化域分别建立交替极化阵列对消盲区模型,推导了对消盲区位置和大小的数学表达式,从而给出了交替极化阵列对消盲区的数学表征方法。进而分析了交替极化阵列对消盲区的分布规律与影响因素,研究发现阵元间距能够显著影响交替极化阵列对消盲区的分布,在相同条件下交替极化阵列对消盲区大于共点极化阵列对消盲区,结果表明交替极化阵列虽然通过减少天线数目降低了设备成本,但增大了阵列的对消盲区。然后,对消盲区模型进行了数值仿真,仿真结果验证了理论分析。最后,利用信道模拟器搭建了实验平台,信道模拟实验测得的对消盲区与理论值基本一致,再次证明了分析结论的有效性。展开更多
为实现极化敏感阵列的相干信源波达方向(direction of arrival,DOA)估计,提出了一种均匀圆阵的极化敏感阵列解相干算法。通过对均匀圆阵极化敏感阵列的输出信号作模式变换,使其阵列流形生成的虚拟均匀线阵具有与均匀线阵相似的平移不变...为实现极化敏感阵列的相干信源波达方向(direction of arrival,DOA)估计,提出了一种均匀圆阵的极化敏感阵列解相干算法。通过对均匀圆阵极化敏感阵列的输出信号作模式变换,使其阵列流形生成的虚拟均匀线阵具有与均匀线阵相似的平移不变性,继而采用平滑重构Toeplitz矩阵使其秩与信号相干性无关,实现了对相干信号的DOA估计。通过仿真实验将该算法与其他两种模式空间算法进行了对比,验证了该算法在角分辨率和目标检测概率上的优越性。该算法具有广阔的应用前景。展开更多
The Chinese Antarctic Great Wall, Zhongshan, Kunlun and Arctic Yellow River stations have unique geographical locations, well suited to carry out polar upper atmospheric observations. This paper reviews the tremendous...The Chinese Antarctic Great Wall, Zhongshan, Kunlun and Arctic Yellow River stations have unique geographical locations, well suited to carry out polar upper atmospheric observations. This paper reviews the tremendous history of nearly 30 years of Chinese polar expeditions and major progress in polar upper atmospheric physics research. This includes the polar upper atmospheric physics conjugate observation system at Zhongshan Station in the Antarctic and Yellow River Station in the Arctic, and original research achievements in polar ionospheric fields, aurora and particle precipitation, the polar current system, polar plasma convection, geomagnetic pulsations and space plasma waves, inter-hemispheric comparisons of the space environment, space weather in polar regions, power spectrum of the incoherent scatter radar, ionospheric heating experiments and polar meso- spheric summer echoes, polar ionosphere-magnetosphere numerical simulation and others. Finally, prospects for Chinese polar upper atmospheric physics research are outlined.展开更多
Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angle planar space to SH-wave with out-of-plane loading on the horizontal stra...Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angle planar space to SH-wave with out-of-plane loading on the horizontal straight boundary. At first, Green function of right-angle planar space which has no circular cavity is constructed; then the scattering solution which satisfies the free stress conditions of the two right-angle boundaries with the circular cavity existing in the space is formulated. Therefore, the total displacement field can be constructed using overlapping principle. An infinite algebraic equations of unknown coefficients existing in the scattering solution field can be gained using multi-polar coordinate and the free stress condition at the boundary of the circular cavity. It can be solved by using limit items in the infinite series which can give a high computation precision. An example is given to illustrate the variations of the tangential stress at the boundary of the circular cavity due to different dimensionless wave numbers, the location of the circular cavity, the loading center and the distributing range of the out-of-plane loading. The results show the efficiency and effectiveness of the mothod introduced here.展开更多
Range measurement has found multiple applications in deep space missions. With more and further deep space ex- ploration activities happening now and in the future, the requirement for range measurement has risen. In ...Range measurement has found multiple applications in deep space missions. With more and further deep space ex- ploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carded out to evaluate the performance of XCPolR.展开更多
Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 k...Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.展开更多
It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Ant...It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Antarctica, and later in the Arctic at Yellow River Station, Kjell Henriksen Observatory on Svalbard, and at the China-Iceland Joint Aurora Observatory in Iceland. In this paper, we reviewed the advances in polar upper atmosphere physics (UAP) based on the Chinese national Arctic and Antarctic research over the last five years. These included newly deployed observatories and research instruments in the Arctic and Antarctic; and new research findings, from grotmd-based observations, about polar ionosphere dynamics, aurora and particle precipitation, polar plasma convection, geomagnetic pulsations and space plasma waves, space weather in the polar regions, simulations of the polar ionosphere-magnetosphere. In conclusion, suggestions were made for future polar upper atmosphere physics research in China.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 12171428)the Sino-German Mobility Programme M-0157Shandong Provincial Natural Science Foundation (Grant No. ZR2022QA069)。
文摘In this paper, we classify the m-ovoids of finite classical polar spaces that admit a transitive automorphism group acting irreducibly on the ambient vector space. In particular, we obtain several new infinite families of transitive m-ovoids.
基金This work was supported by the National Natural Science Foundation of China(no.21871247)the Key Research Program of Frontier Sciences,CAS(no.ZDBSLY-SLH023)+2 种基金the Key Research Program of the Chinese Academy of Sciences(no.ZDRW-CN-2021-3-3)the Academy of Finland(grant no.332294)Computational resources were provided by CSC-IT Center for Science in Finland and the Finnish Grid and Cloud Infrastructure(persistent identifier urn:nbn:fi:research-infras-2016072533).
文摘Magnetoelectric(ME)multiferroic materials have unique advantages in low-power and high-density information storage,because they can simultaneously display ferroelectricity and ferromagnetism.However,research on how to construct air-stable highperformance ME single-molecule magnets(SMMs)is nonexistent.Herein,by introducing homochirality while reducing molecular symmetry,two doubledecker Dy(III)enantiomers adopting the polar space group P2_(1) and exhibiting excellent thermal stability were obtained.They displayed zero field SMM behavior with an anisotropy barrier(Ueff)of ca.100 cm^(−1).This work establishes a rational chemical design strategy for crystallizing SMMs in polar space groups and elucidates the direction for future research,that is,engineering small-size high-performance SMMs.
文摘当干扰信号的空域和极化域特征与目标信号相似时,采用空极化域联合抗干扰技术在消除干扰的同时也会抑制目标信号,导致干扰对消后信干噪比(signal to interference plus noise ratio,SINR)低于雷达系统需求,从而形成干扰对消盲区。针对这一现象,通过在空域、极化域与空极化域分别建立交替极化阵列对消盲区模型,推导了对消盲区位置和大小的数学表达式,从而给出了交替极化阵列对消盲区的数学表征方法。进而分析了交替极化阵列对消盲区的分布规律与影响因素,研究发现阵元间距能够显著影响交替极化阵列对消盲区的分布,在相同条件下交替极化阵列对消盲区大于共点极化阵列对消盲区,结果表明交替极化阵列虽然通过减少天线数目降低了设备成本,但增大了阵列的对消盲区。然后,对消盲区模型进行了数值仿真,仿真结果验证了理论分析。最后,利用信道模拟器搭建了实验平台,信道模拟实验测得的对消盲区与理论值基本一致,再次证明了分析结论的有效性。
文摘为实现极化敏感阵列的相干信源波达方向(direction of arrival,DOA)估计,提出了一种均匀圆阵的极化敏感阵列解相干算法。通过对均匀圆阵极化敏感阵列的输出信号作模式变换,使其阵列流形生成的虚拟均匀线阵具有与均匀线阵相似的平移不变性,继而采用平滑重构Toeplitz矩阵使其秩与信号相干性无关,实现了对相干信号的DOA估计。通过仿真实验将该算法与其他两种模式空间算法进行了对比,验证了该算法在角分辨率和目标检测概率上的优越性。该算法具有广阔的应用前景。
文摘The Chinese Antarctic Great Wall, Zhongshan, Kunlun and Arctic Yellow River stations have unique geographical locations, well suited to carry out polar upper atmospheric observations. This paper reviews the tremendous history of nearly 30 years of Chinese polar expeditions and major progress in polar upper atmospheric physics research. This includes the polar upper atmospheric physics conjugate observation system at Zhongshan Station in the Antarctic and Yellow River Station in the Arctic, and original research achievements in polar ionospheric fields, aurora and particle precipitation, the polar current system, polar plasma convection, geomagnetic pulsations and space plasma waves, inter-hemispheric comparisons of the space environment, space weather in polar regions, power spectrum of the incoherent scatter radar, ionospheric heating experiments and polar meso- spheric summer echoes, polar ionosphere-magnetosphere numerical simulation and others. Finally, prospects for Chinese polar upper atmospheric physics research are outlined.
文摘Complex function method and multi-polar coordinate transformation technology are used here to study scattering of circular cavity in right-angle planar space to SH-wave with out-of-plane loading on the horizontal straight boundary. At first, Green function of right-angle planar space which has no circular cavity is constructed; then the scattering solution which satisfies the free stress conditions of the two right-angle boundaries with the circular cavity existing in the space is formulated. Therefore, the total displacement field can be constructed using overlapping principle. An infinite algebraic equations of unknown coefficients existing in the scattering solution field can be gained using multi-polar coordinate and the free stress condition at the boundary of the circular cavity. It can be solved by using limit items in the infinite series which can give a high computation precision. An example is given to illustrate the variations of the tangential stress at the boundary of the circular cavity due to different dimensionless wave numbers, the location of the circular cavity, the loading center and the distributing range of the out-of-plane loading. The results show the efficiency and effectiveness of the mothod introduced here.
基金supported by the National Natural Science Foundation of China(Grant Nos.61172138 and 61401340)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2013JQ8040)+4 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130203120004)the Open Research Fund of the Academy of Satellite Application,China(Grant No.2014 CXJJ-DH 12)the Xi’an Science and Technology Plan,China(Grant No.CXY1350(4))the Fundamental Research Funds for the Central Universities,China(Grant Nos.201413B,201412B,and JB141303)the Open Fund of Key Laboratory of Precision Navigation and Timing Technology,National Time Service Center,Chinese Academy of Sciences(Grant Nos.2014PNTT01,2014PNTT07,and 2014PNTT08)
文摘Range measurement has found multiple applications in deep space missions. With more and further deep space ex- ploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carded out to evaluate the performance of XCPolR.
文摘Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.
基金supported by the Chinese Polar Environment Comprehensive Investigation and Assessment Programs (Grant nos. CHINARE 2017-04-01, and 2017-02-04)National Natural Science Foundation of China (Grant nos. 41274164, 41374159, 41431072, and 41274148)+1 种基金Pudong Development of Science and Technology Program (Grant no. Pkj2013-z01)Top-Notch Young Talents Program of China
文摘It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Antarctica, and later in the Arctic at Yellow River Station, Kjell Henriksen Observatory on Svalbard, and at the China-Iceland Joint Aurora Observatory in Iceland. In this paper, we reviewed the advances in polar upper atmosphere physics (UAP) based on the Chinese national Arctic and Antarctic research over the last five years. These included newly deployed observatories and research instruments in the Arctic and Antarctic; and new research findings, from grotmd-based observations, about polar ionosphere dynamics, aurora and particle precipitation, polar plasma convection, geomagnetic pulsations and space plasma waves, space weather in the polar regions, simulations of the polar ionosphere-magnetosphere. In conclusion, suggestions were made for future polar upper atmosphere physics research in China.