Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of po...This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.展开更多
The influe nce of initiation modes on the explosive dispersion process of the multi-layer co mposite charge(MCC) was studied.Overpressure sensors and high-speed photography system were used to investigate the energy r...The influe nce of initiation modes on the explosive dispersion process of the multi-layer co mposite charge(MCC) was studied.Overpressure sensors and high-speed photography system were used to investigate the energy release process of an MCC with a specific structure.The shock wave pressure and explosive dispersion characteristics of the MCC under different initiation modes were compared.The forming and expanding process of the shock wave of the composite charge under different initiation modes was determined.The separation position of the shock wave and fireball interface was determined.The calculation formulas of the shock radius and overpressure of the composite charge are presented.The radius of the shock wave of the composite charge was significantly affected by the initiation mode.Moreover,the development process of the composite explosive fireball under different initiation modes was analyzed,the variation rules of the composite charge dispersion radius and fireball dispersion velocity with time were obtained under the different initiation modes,the explosion energy release rate of composite charge under simultaneous initiation modes was the highest,and the peak overpressure under the simultaneous initiation mode was 1.61 times that of central single-point initiation.展开更多
Ultrasonic Lamb waves are considered as a sensitive and effective tool for nondestructive testing and evaluation of plate-like or pipe-like structures. The nature of multimode and dispersion causes the wave packets to...Ultrasonic Lamb waves are considered as a sensitive and effective tool for nondestructive testing and evaluation of plate-like or pipe-like structures. The nature of multimode and dispersion causes the wave packets to spread, and the modes overlap in both time and frequency domains as they propagate through the structures. By using a two-component laser interferometer technique, in combination with a priori knowledge of the dispersion characteristics and wave structure information of Lamb wave modes, a two-component signal processing technique is presented for implementing dispersion removal and mode separation simultaneously for two modes mixture signals of Lamb waves. The proposed algorithm is first processed and verified using synthetic Lamb wave signals. Then, the two-component displacements test experiment is conducted using different aluminum plate samples. Moreover, we confirm the effectiveness and robustness of this method.展开更多
The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equa...The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equation.The displacement expressions of the Scholte waves in liquid and solid were derived.Additionally,the mode of motion of Scholte waves in liquid and solid and their variation with depth was studied.The following results were obtained:The dispersion equation shows that the propagation velocity of the fundamental Scholte wave was greater than the P-wave in liquid and less than that of the Scholte wave in homogeneous elastic half-space.In contrast,the velocity of higher-order Scholte waves was greater than that of P waves in liquid and S-waves in solid.Only the fundamental Scholte wave has no cutoff frequency.The Scholte wave at the liquid surface moved only vertically,while the particles inside the liquid medium moved elliptically.The amplitude variation with depth in the solid medium caused the particle motion to change from a retrograde ellipse to a prograde ellipse.The above results imply the study of Scholte waves in the ocean and oceanic crust and help estimate ocean depths.展开更多
We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dis...We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.展开更多
Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challengi...Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challenging task, because PMD possesses the time-varying and statistical properties. The particle swarm optimization(PSO) algorithm is introduced into self-adaptive PMD compensation as feedback control algorithm. The experiment results show that PSO-based control algorithm has some unique features of rapid convergence to the global optimum without being trapped in local sub-optima and good robustness to noise in the optical fiber transmission line that has never been achieved in PMD compensation before.展开更多
A simple two-section polarization mode dispersion(PMD) compensator is proposed for multichannel PMD compensation, which can compensate two or even more channels simultaneously. Because of the statistical characteristi...A simple two-section polarization mode dispersion(PMD) compensator is proposed for multichannel PMD compensation, which can compensate two or even more channels simultaneously. Because of the statistical characteristics and the frequency-dependence of PMD, for current single mode fiber with moderate PMD, the probability that all channels are severely degraded at the same time is extremely small, which makes it possible to compensate a dense wavelength division multiplexing(DWDM) transmission system with moderate PMD using this compensator. It is shown that the outage probability of a 40×43 Gb/s DWDM transmission system using this compensator is decreased significantly from 3.6×10-3 to 3.6×10-5.展开更多
This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing...This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10<sup>-2</sup> at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 10<sup>4</sup> at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W<sup>-1</sup>⋅Km<sup>-1</sup> for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm⋅km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.展开更多
Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of ...Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of signals and is widely used in different fields.Reverse dispersion entropy(RDE)proposed by us recently,as a nonlinear dynamic analysis method,has the advantages of fast computing speed and strong anti-noise ability,which is more suitable for measuring the complexity of signal than traditional permutation entropy(PE)and dispersion entropy(DE).Empirical wavelet transform(EWT),based on the theory of wavelet analysis,can decompose a complex non-stationary signal into a number of empirical wavelet functions(EWFs)with compact support set spectrum,which has better decomposition performance than empirical mode decomposition(EMD)and its improved algorithms.Considering the advantages of RDE and EWT,on the one hand,we introduce EWT into the field of underwater acoustic signal processing and fault diagnosis to improve the signal decomposition accuracy;on the other hand,we use RDE as the features of EWFs to improve the signal separability and stability.Finally,we propose a novel signal feature extraction technology based on EWT and RDE in this paper.Experimental results show that the proposed feature extraction technology can effectively extract the complexity features of actual signals.Moreover,it also has higher distinguishing ability for different types of signals than five latest feature extraction technologies.展开更多
In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as e...In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as effective refractive index, confinement loss, chromatic dispersion mode effective area and nonlinear coefficient are numerically analyzed. The simulation results show that the fibers have dispersion flattened, ultra-low loss highly nonlinear nature in the wavelength region 1.3 μm to 1.7 μm.展开更多
The fundamental momentum conservation requirement q - 0 for the Raman process is relaxed in the nanocrystal- lites (NCs), and phonons away from the Brillouin-zone center will be involved in the Raman scattering, whi...The fundamental momentum conservation requirement q - 0 for the Raman process is relaxed in the nanocrystal- lites (NCs), and phonons away from the Brillouin-zone center will be involved in the Raman scattering, which is well-known as the phonon confinement effect in NCs. This usually gives a downshift and asymmetric broadening of the Raman peak in various NCs. Recently, the A1 mode of 1L MoS2 NCs is found to exhibit a blue shift and asymmetric broadening toward the high-frequency side [Chem. Soc. Rev. 44 (2015) 2757 and Phys. Rev. B 91 (2015) 195411]. In this work, we carefully check this issue by studying Raman spectra of lL MoS2 NCs prepared by the ion implantation technique in a wide range of ion-implanted dosage. The same confinement coefficient is used for both E' and A'1 modes in 1L MoS2 NCs since the phonon uncertainty in an NC is mainly determined by its domain size. The asymmetrical broadening near the A'1 and E' modes is attributed to the appearance of defect-activated phonons at the zone edge and the intrinsic asymmetrical broadening of the two modes, where the anisotropy of phonon dispersion curves along Г-K and Г- M is also considered. The photoluminescence spectra confirm the formation of small domain size of 1L MoS2 nanocrystallites in the ion-implanted 1L MoS2. This study provides not only an approach to quickly probe phonon dispersion trends of 2D materials away from Г by the Raman scattering of the corresponding NCs, but also a reference to completely understand the confinement effect of different modes in various nanomaterials.展开更多
In this paper, the influences of the dispersion distribution in the cavity on the output pulse properties of the all-normaldispersion(ANDi) fiber laser are investigated. Our simulations show that, as the relative le...In this paper, the influences of the dispersion distribution in the cavity on the output pulse properties of the all-normaldispersion(ANDi) fiber laser are investigated. Our simulations show that, as the relative length of the dispersion fiber increases, the temporal width and the spectral bandwidth of the output pulse for an ANDi fiber laser with fixed total cavity dispersion or fiber length are decreased, while the pulse energy is enhanced and the compressed pulse width is increased.These simulation predictions have been proved by our experimental results. The reason may be that the nonlinear phase shift accumulated in the nonlinear fiber is more than that in the dispersion fiber if they have the same length.展开更多
Based on the general theory of linear Chirped Bragg fiber grating, this paper discusses some parameters including different chirped values and quasi gauss coupling function relating with the reflectivity coefficient d...Based on the general theory of linear Chirped Bragg fiber grating, this paper discusses some parameters including different chirped values and quasi gauss coupling function relating with the reflectivity coefficient dispersion compensation.The result shows that selecting larger chirped value and appropriate qusi guass coupling function can improve the dispersion compensation while ensuring high reflectivity. The concept of "figure of merit" in the microwave field is introduced to quantize the equalizing power of the dispersion compensator.展开更多
The modulation phase shift method was used to measure chromatic dispersion in a standard single mode fiber for telecommunication. The modulation phase difference of the transmitted light at the wavelength of 1532.16 n...The modulation phase shift method was used to measure chromatic dispersion in a standard single mode fiber for telecommunication. The modulation phase difference of the transmitted light at the wavelength of 1532.16 nm modulated by a radio frequency signal was measured, relative to the transmitted light at the wavelength of 1549.33 nm modulated by the same signal. By introducing a reference light at the wavelength of 1310 nm, a 1310/1550 nm wavelength division multiplexing was used instead of the high cost dense wavelength division multiplexing. In the experiment, two testing lights were coupled with the reference light to the fiber spools of different lengths, respectively. By finite difference method, the chromatic dispersion between the two testing lights was measured, and the fixed errors generated during transmission were less than 0.5 ps/(nm·km).展开更多
A 10 Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 1...A 10 Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 10-9. The effect of the group delay ripple of the fiber grating is also investigated in the recirculating systems, and it is shown that the transmission distance is limited to 4 cycles (4× 167.1km ) in the loop with the power penalty fluctuation below 1.0dB. Thus the group delay ripple should be reduced to allow for the wavelength drift of ±5GHz.At the end of this letter, the principles are given for designing long haul recirculating systems with dispersion compensation CFBG.展开更多
A novel online Differential Mode Group Delay(DMGD)monitoring method based on four-wave mixing(FWM) in few mode fiber(FMF) transmission system is proposed, and the DMGD monitoring is achieved on the whole range of 15-5...A novel online Differential Mode Group Delay(DMGD)monitoring method based on four-wave mixing(FWM) in few mode fiber(FMF) transmission system is proposed, and the DMGD monitoring is achieved on the whole range of 15-50 ps/km. Detection principle is deduced and relationship of the power of idler waves and DMGD is analyzed. With various chromatic dispersion(CD)values, different line widths and different optical signal noise ratio(OSNR) values, the simulations are carried out. The simulation results show that this new DMGD monitoring method is less affected by different line widths and has a high tolerance for OSNR.展开更多
1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this ...1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this work, we tackle the evolution of an initial coherent state in a Raman dispersion process which is also a nonlinear process. The process involves the inelastic scattering of a pho- ton when it is incident on a molecule. The photon loses some of its energy to the molecule or gains some from it, and so leaves the molecule with a lower or a higher frequency. The lower frequency components of the scattered radiation are called the Stokes lines and the higher frequency components are called the anti- Stokes lines. The Hamiltonian governing its dynamics is[3]展开更多
Three-dimensional(3D)glass chips are promising waveguide platforms for building hybrid 3D photonic circuits due to their 3D topological capabilities,large transparent windows,and low coupling dispersion.At present,the...Three-dimensional(3D)glass chips are promising waveguide platforms for building hybrid 3D photonic circuits due to their 3D topological capabilities,large transparent windows,and low coupling dispersion.At present,the key challenge in scaling down a benchtop optical system to a glass chip is the lack of precise methods for controlling the mode field and optical coupling of 3D waveguide circuits.Here,we propose an overlap-controlled multi-scan(OCMS)method based on laser-direct lithography that allows customizing the refractive index profile of 3D waveguides with high spatial precision in a variety of glasses.On the basis of this method,we achieve variable mode-field distribution,robust and broadband coupling,and thereby demonstrate dispersionless LP21-mode conversion of supercontinuum pulses with the largest deviation of<0.1 dB in coupling ratios on 210 nm broadband.This approach provides a route to achieve ultra-broadband and low-dispersion coupling in 3D photonic circuits,with overwhelming advantages over conventional planar waveguide-optic platforms for on-chip transmission and manipulation of ultrashort laser pulses and broadband supercontinuum.展开更多
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
基金Project supported by the Huawei Technology Project (Grant No.YBON2008014)the National "863" High Technology Projects (Grant No.2009AA01Z224)
文摘This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.
文摘The influe nce of initiation modes on the explosive dispersion process of the multi-layer co mposite charge(MCC) was studied.Overpressure sensors and high-speed photography system were used to investigate the energy release process of an MCC with a specific structure.The shock wave pressure and explosive dispersion characteristics of the MCC under different initiation modes were compared.The forming and expanding process of the shock wave of the composite charge under different initiation modes was determined.The separation position of the shock wave and fireball interface was determined.The calculation formulas of the shock radius and overpressure of the composite charge are presented.The radius of the shock wave of the composite charge was significantly affected by the initiation mode.Moreover,the development process of the composite explosive fireball under different initiation modes was analyzed,the variation rules of the composite charge dispersion radius and fireball dispersion velocity with time were obtained under the different initiation modes,the explosion energy release rate of composite charge under simultaneous initiation modes was the highest,and the peak overpressure under the simultaneous initiation mode was 1.61 times that of central single-point initiation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374230)
文摘Ultrasonic Lamb waves are considered as a sensitive and effective tool for nondestructive testing and evaluation of plate-like or pipe-like structures. The nature of multimode and dispersion causes the wave packets to spread, and the modes overlap in both time and frequency domains as they propagate through the structures. By using a two-component laser interferometer technique, in combination with a priori knowledge of the dispersion characteristics and wave structure information of Lamb wave modes, a two-component signal processing technique is presented for implementing dispersion removal and mode separation simultaneously for two modes mixture signals of Lamb waves. The proposed algorithm is first processed and verified using synthetic Lamb wave signals. Then, the two-component displacements test experiment is conducted using different aluminum plate samples. Moreover, we confirm the effectiveness and robustness of this method.
基金supported by the National Natural Science Fondation of China(Nos.42174074,41674055,41704053)the Earthquake Science Spark Program of Hebei Province(No.DZ20200827053)+1 种基金Fundamental Research Funds for the Central Universities(No.ZY20215117)the Hebei Key Laboratory of Earthquake Dynamics(No.FZ212105).
文摘The dispersion equation of the Scholte wave was reviewed using the homogeneous elastic half-space covered by a liquid layer,and the range of the Scholte wave propagation velocity was examined using the dispersion equation.The displacement expressions of the Scholte waves in liquid and solid were derived.Additionally,the mode of motion of Scholte waves in liquid and solid and their variation with depth was studied.The following results were obtained:The dispersion equation shows that the propagation velocity of the fundamental Scholte wave was greater than the P-wave in liquid and less than that of the Scholte wave in homogeneous elastic half-space.In contrast,the velocity of higher-order Scholte waves was greater than that of P waves in liquid and S-waves in solid.Only the fundamental Scholte wave has no cutoff frequency.The Scholte wave at the liquid surface moved only vertically,while the particles inside the liquid medium moved elliptically.The amplitude variation with depth in the solid medium caused the particle motion to change from a retrograde ellipse to a prograde ellipse.The above results imply the study of Scholte waves in the ocean and oceanic crust and help estimate ocean depths.
文摘We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.
基金National Natural Science Foundation of China(60577046) Cooperation Building Project of Beijing EducationCommittee(XK100130437)
文摘Polarization mode dispersion(PMD) is considered to be the ultimate limitation in high-speed optical fiber communication systems. Establishing an effective control algorithm for adaptive PMD compensation is a challenging task, because PMD possesses the time-varying and statistical properties. The particle swarm optimization(PSO) algorithm is introduced into self-adaptive PMD compensation as feedback control algorithm. The experiment results show that PSO-based control algorithm has some unique features of rapid convergence to the global optimum without being trapped in local sub-optima and good robustness to noise in the optical fiber transmission line that has never been achieved in PMD compensation before.
基金National Nature Science Foundation of China(60320130174)
文摘A simple two-section polarization mode dispersion(PMD) compensator is proposed for multichannel PMD compensation, which can compensate two or even more channels simultaneously. Because of the statistical characteristics and the frequency-dependence of PMD, for current single mode fiber with moderate PMD, the probability that all channels are severely degraded at the same time is extremely small, which makes it possible to compensate a dense wavelength division multiplexing(DWDM) transmission system with moderate PMD using this compensator. It is shown that the outage probability of a 40×43 Gb/s DWDM transmission system using this compensator is decreased significantly from 3.6×10-3 to 3.6×10-5.
文摘This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10<sup>-2</sup> at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 10<sup>4</sup> at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W<sup>-1</sup>⋅Km<sup>-1</sup> for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm⋅km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.
基金the supported by National Natural Science Foundation of China(No.61871318 and 11574250)Scientific Research Plan Projects of Shaanxi Education Department(No.19JK0568).
文摘Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of signals and is widely used in different fields.Reverse dispersion entropy(RDE)proposed by us recently,as a nonlinear dynamic analysis method,has the advantages of fast computing speed and strong anti-noise ability,which is more suitable for measuring the complexity of signal than traditional permutation entropy(PE)and dispersion entropy(DE).Empirical wavelet transform(EWT),based on the theory of wavelet analysis,can decompose a complex non-stationary signal into a number of empirical wavelet functions(EWFs)with compact support set spectrum,which has better decomposition performance than empirical mode decomposition(EMD)and its improved algorithms.Considering the advantages of RDE and EWT,on the one hand,we introduce EWT into the field of underwater acoustic signal processing and fault diagnosis to improve the signal decomposition accuracy;on the other hand,we use RDE as the features of EWFs to improve the signal separability and stability.Finally,we propose a novel signal feature extraction technology based on EWT and RDE in this paper.Experimental results show that the proposed feature extraction technology can effectively extract the complexity features of actual signals.Moreover,it also has higher distinguishing ability for different types of signals than five latest feature extraction technologies.
文摘In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as effective refractive index, confinement loss, chromatic dispersion mode effective area and nonlinear coefficient are numerically analyzed. The simulation results show that the fibers have dispersion flattened, ultra-low loss highly nonlinear nature in the wavelength region 1.3 μm to 1.7 μm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11225421,11474277,11434010 and 11574305the National Young 1000 Talent Plan
文摘The fundamental momentum conservation requirement q - 0 for the Raman process is relaxed in the nanocrystal- lites (NCs), and phonons away from the Brillouin-zone center will be involved in the Raman scattering, which is well-known as the phonon confinement effect in NCs. This usually gives a downshift and asymmetric broadening of the Raman peak in various NCs. Recently, the A1 mode of 1L MoS2 NCs is found to exhibit a blue shift and asymmetric broadening toward the high-frequency side [Chem. Soc. Rev. 44 (2015) 2757 and Phys. Rev. B 91 (2015) 195411]. In this work, we carefully check this issue by studying Raman spectra of lL MoS2 NCs prepared by the ion implantation technique in a wide range of ion-implanted dosage. The same confinement coefficient is used for both E' and A'1 modes in 1L MoS2 NCs since the phonon uncertainty in an NC is mainly determined by its domain size. The asymmetrical broadening near the A'1 and E' modes is attributed to the appearance of defect-activated phonons at the zone edge and the intrinsic asymmetrical broadening of the two modes, where the anisotropy of phonon dispersion curves along Г-K and Г- M is also considered. The photoluminescence spectra confirm the formation of small domain size of 1L MoS2 nanocrystallites in the ion-implanted 1L MoS2. This study provides not only an approach to quickly probe phonon dispersion trends of 2D materials away from Г by the Raman scattering of the corresponding NCs, but also a reference to completely understand the confinement effect of different modes in various nanomaterials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61250017,61377044,61275186,and 61205099)the National Basic Research Program of China(Grant No.2013CB934304)
文摘In this paper, the influences of the dispersion distribution in the cavity on the output pulse properties of the all-normaldispersion(ANDi) fiber laser are investigated. Our simulations show that, as the relative length of the dispersion fiber increases, the temporal width and the spectral bandwidth of the output pulse for an ANDi fiber laser with fixed total cavity dispersion or fiber length are decreased, while the pulse energy is enhanced and the compressed pulse width is increased.These simulation predictions have been proved by our experimental results. The reason may be that the nonlinear phase shift accumulated in the nonlinear fiber is more than that in the dispersion fiber if they have the same length.
文摘Based on the general theory of linear Chirped Bragg fiber grating, this paper discusses some parameters including different chirped values and quasi gauss coupling function relating with the reflectivity coefficient dispersion compensation.The result shows that selecting larger chirped value and appropriate qusi guass coupling function can improve the dispersion compensation while ensuring high reflectivity. The concept of "figure of merit" in the microwave field is introduced to quantize the equalizing power of the dispersion compensator.
基金Doctoral Foundation of Education Ministry of China(No 20040056008) National Natural Science Foundation ofChina (No 50539060)
文摘The modulation phase shift method was used to measure chromatic dispersion in a standard single mode fiber for telecommunication. The modulation phase difference of the transmitted light at the wavelength of 1532.16 nm modulated by a radio frequency signal was measured, relative to the transmitted light at the wavelength of 1549.33 nm modulated by the same signal. By introducing a reference light at the wavelength of 1310 nm, a 1310/1550 nm wavelength division multiplexing was used instead of the high cost dense wavelength division multiplexing. In the experiment, two testing lights were coupled with the reference light to the fiber spools of different lengths, respectively. By finite difference method, the chromatic dispersion between the two testing lights was measured, and the fixed errors generated during transmission were less than 0.5 ps/(nm·km).
基金the National 863 High Technology Development Program of China (No.2001 AA122012)
文摘A 10 Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 10-9. The effect of the group delay ripple of the fiber grating is also investigated in the recirculating systems, and it is shown that the transmission distance is limited to 4 cycles (4× 167.1km ) in the loop with the power penalty fluctuation below 1.0dB. Thus the group delay ripple should be reduced to allow for the wavelength drift of ±5GHz.At the end of this letter, the principles are given for designing long haul recirculating systems with dispersion compensation CFBG.
基金supported by the National Science Foundation of China (61574080)Research Center of Optical Communications Engineering & Technology,Jiangsu Province (ZXF201803)
文摘A novel online Differential Mode Group Delay(DMGD)monitoring method based on four-wave mixing(FWM) in few mode fiber(FMF) transmission system is proposed, and the DMGD monitoring is achieved on the whole range of 15-50 ps/km. Detection principle is deduced and relationship of the power of idler waves and DMGD is analyzed. With various chromatic dispersion(CD)values, different line widths and different optical signal noise ratio(OSNR) values, the simulations are carried out. The simulation results show that this new DMGD monitoring method is less affected by different line widths and has a high tolerance for OSNR.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10475056)
文摘1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this work, we tackle the evolution of an initial coherent state in a Raman dispersion process which is also a nonlinear process. The process involves the inelastic scattering of a pho- ton when it is incident on a molecule. The photon loses some of its energy to the molecule or gains some from it, and so leaves the molecule with a lower or a higher frequency. The lower frequency components of the scattered radiation are called the Stokes lines and the higher frequency components are called the anti- Stokes lines. The Hamiltonian governing its dynamics is[3]
基金supported by the National Key R&D Program of China (No.2021YFB2802000)National Natural Science Foundation of China (Nos.U20A20211,62275233,62005164,62375246,and 62105297)+1 种基金“Pioneer”and“Leading Goose”R&D Program of Zhejiang (2023C03089)Zhejiang Provincial Natural Science Foundation (Nos.LZ23F050002 and LQ22F050022).
文摘Three-dimensional(3D)glass chips are promising waveguide platforms for building hybrid 3D photonic circuits due to their 3D topological capabilities,large transparent windows,and low coupling dispersion.At present,the key challenge in scaling down a benchtop optical system to a glass chip is the lack of precise methods for controlling the mode field and optical coupling of 3D waveguide circuits.Here,we propose an overlap-controlled multi-scan(OCMS)method based on laser-direct lithography that allows customizing the refractive index profile of 3D waveguides with high spatial precision in a variety of glasses.On the basis of this method,we achieve variable mode-field distribution,robust and broadband coupling,and thereby demonstrate dispersionless LP21-mode conversion of supercontinuum pulses with the largest deviation of<0.1 dB in coupling ratios on 210 nm broadband.This approach provides a route to achieve ultra-broadband and low-dispersion coupling in 3D photonic circuits,with overwhelming advantages over conventional planar waveguide-optic platforms for on-chip transmission and manipulation of ultrashort laser pulses and broadband supercontinuum.