We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photo...We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.展开更多
Using the ground observation data at Zhongshan Station of Antarctica during July 13 to 17, 2000, the intense absorption events associated with the activities of the solar active region R9077 are analyzed. It was shown...Using the ground observation data at Zhongshan Station of Antarctica during July 13 to 17, 2000, the intense absorption events associated with the activities of the solar active region R9077 are analyzed. It was shown that an intense polar cap absorption event lasted more than 3 days, which was caused by the solar proton event associated with the X5/3B major flare at 1024 UT on July 13. The polar cap event started at about 1040 UT on July 14, and lasted to about 1940 UT on July 17, with a typical day night variation. At the same time, the intense solar activities extremely disturbed the magnetosphere, therefore aurora substorms occurred frequently. The energetic particle precipitation from the magnetosphere caused several absorption spikes superposing on the background of polar cap absorption. One distinct event is the absorption enhancement that started at about 0300 UT on July 15, reached its peak of 26 dB at about 0645 UT and recovered at about 1110 UT on the same day, which was the strongest absorption event observed at Zhongshan Station since the imaging riometer installed in February, 1997. Another outstanding absorption spike with pulsation occurred at about 1753 UT on 14th, its peak reached to 6 dB.展开更多
By transferring 100 nm gold-coated CVD monolayer graphene onto the well-polished surface of D-shaped fiber, we achieve a graphene in-line polarizer with a high polarization extinction ratio of ~27 d B and low insertio...By transferring 100 nm gold-coated CVD monolayer graphene onto the well-polished surface of D-shaped fiber, we achieve a graphene in-line polarizer with a high polarization extinction ratio of ~27 d B and low insertion loss of 5 d B at 1550 nm, meanwhile achieving a strong saturable absorption effect of 14%. The manufacture of this graphene in-line polarizer also simplifies the graphene transfer process. To explore the potential applications of the new device, we also demonstrate noise-like pulse generation and supercontinuum spectrum generation. By launching the designed graphene device into a fiber ring laser cavity, 51 nm bandwidth noise-like pulse is obtained. Then, launching the high-power noise-like pulse into high nonlinear fiber, a 1000 nm wide supercontinuum spectrum is obtained, which is favorable for sensing and nonlinearities scientific fields.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096,11604199,U1704145 and 11747101the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500+1 种基金the Henan Provincial Natural Science Foundation of China under Grant No 182102210117the Higher Education Key Program of He’nan Province of China under Grant Nos 17A140025 and 16A140030
文摘We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.
文摘Using the ground observation data at Zhongshan Station of Antarctica during July 13 to 17, 2000, the intense absorption events associated with the activities of the solar active region R9077 are analyzed. It was shown that an intense polar cap absorption event lasted more than 3 days, which was caused by the solar proton event associated with the X5/3B major flare at 1024 UT on July 13. The polar cap event started at about 1040 UT on July 14, and lasted to about 1940 UT on July 17, with a typical day night variation. At the same time, the intense solar activities extremely disturbed the magnetosphere, therefore aurora substorms occurred frequently. The energetic particle precipitation from the magnetosphere caused several absorption spikes superposing on the background of polar cap absorption. One distinct event is the absorption enhancement that started at about 0300 UT on July 15, reached its peak of 26 dB at about 0645 UT and recovered at about 1110 UT on the same day, which was the strongest absorption event observed at Zhongshan Station since the imaging riometer installed in February, 1997. Another outstanding absorption spike with pulsation occurred at about 1753 UT on 14th, its peak reached to 6 dB.
基金supported by National Natural Science Foundation of China(61322507,61090393 and 61575122)
文摘By transferring 100 nm gold-coated CVD monolayer graphene onto the well-polished surface of D-shaped fiber, we achieve a graphene in-line polarizer with a high polarization extinction ratio of ~27 d B and low insertion loss of 5 d B at 1550 nm, meanwhile achieving a strong saturable absorption effect of 14%. The manufacture of this graphene in-line polarizer also simplifies the graphene transfer process. To explore the potential applications of the new device, we also demonstrate noise-like pulse generation and supercontinuum spectrum generation. By launching the designed graphene device into a fiber ring laser cavity, 51 nm bandwidth noise-like pulse is obtained. Then, launching the high-power noise-like pulse into high nonlinear fiber, a 1000 nm wide supercontinuum spectrum is obtained, which is favorable for sensing and nonlinearities scientific fields.