A flexible polarization demultiplexing method based on an adaptive Kalman filter(AKF) is proposed in which the process noise covariance has been estimated adaptively. The proposed method may significantly improve th...A flexible polarization demultiplexing method based on an adaptive Kalman filter(AKF) is proposed in which the process noise covariance has been estimated adaptively. The proposed method may significantly improve the adaptive capability of an extended Kalman filter(EKF) by adaptively estimating the unknown process noise covariance. Compared to the conventional EKF, the proposed method can avoid the tedious and time consuming parameter-by-parameter tuning operations. The effectiveness of this method is confirmed experimentally in 128 Gb/s 16 QAM polarization-division-multiplexing(PDM) coherent optical transmission systems. The results illustrate that our proposed AKF has a better tracking accuracy and a faster convergence(about 4 times quicker)compared to a conventional algorithm with optimal process noise covariance.展开更多
A compact and fabrication friendly polarization demultiplexer(P-DEMUX) is proposed and characterized to enable wavelength-division-multiplexing and polarization-division-multiplexing simultaneously. The proposed struc...A compact and fabrication friendly polarization demultiplexer(P-DEMUX) is proposed and characterized to enable wavelength-division-multiplexing and polarization-division-multiplexing simultaneously. The proposed structure is composed of a polarization-selective microring resonator in ultrathin waveguide and two bus channels in the silicon nitridesilica-silicon horizontal slot waveguides. In the slot waveguide, the transverse electric(TE) mode propagates through the silicon layer, while the transverse magnetic(TM) mode is confined in the slot region. In the designed ultra-thin waveguide, the TM mode is cut-off. The effective indexes of the TE modes for ultrathin and slot waveguides have comparable values. Thanks for these distinguishing features, the input TE mode can be efficiently filtered through the ultra-thin microring at the resonant wavelength, while the TM mode can directly output from the through port. Simulation results show that the extinction ratio of the proposed P-DEMUX for TE and TM modes are 33.21 dB and 24.97 dB, and the insertion losses are 0.346 dB and 0.324 dB, respectively, at the wavelength of 1551.64 nm. Furthermore, the device shows a broad bandwidth(> 100 nm) for an extinction ratio(ER) of > 20 dB. In addition, the proposed P-DEMUX also has a good fabrication tolerance for the waveguide width variation of-20 nm≤ △w_(g)≤ 20 nm and the microring width variation of -20 nm≤ △w_(r) ≤20 nm for a low insertion loss of < 0.75 dB and low ER of <-18 dB.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61335005,61325023,and 61401378)
文摘A flexible polarization demultiplexing method based on an adaptive Kalman filter(AKF) is proposed in which the process noise covariance has been estimated adaptively. The proposed method may significantly improve the adaptive capability of an extended Kalman filter(EKF) by adaptively estimating the unknown process noise covariance. Compared to the conventional EKF, the proposed method can avoid the tedious and time consuming parameter-by-parameter tuning operations. The effectiveness of this method is confirmed experimentally in 128 Gb/s 16 QAM polarization-division-multiplexing(PDM) coherent optical transmission systems. The results illustrate that our proposed AKF has a better tracking accuracy and a faster convergence(about 4 times quicker)compared to a conventional algorithm with optimal process noise covariance.
基金Project is supported by the National Natural Science Foundation of China (Grant No. 61804148)the National Key Research and Development Program of China (Grant No. 2018YFB2200202)。
文摘A compact and fabrication friendly polarization demultiplexer(P-DEMUX) is proposed and characterized to enable wavelength-division-multiplexing and polarization-division-multiplexing simultaneously. The proposed structure is composed of a polarization-selective microring resonator in ultrathin waveguide and two bus channels in the silicon nitridesilica-silicon horizontal slot waveguides. In the slot waveguide, the transverse electric(TE) mode propagates through the silicon layer, while the transverse magnetic(TM) mode is confined in the slot region. In the designed ultra-thin waveguide, the TM mode is cut-off. The effective indexes of the TE modes for ultrathin and slot waveguides have comparable values. Thanks for these distinguishing features, the input TE mode can be efficiently filtered through the ultra-thin microring at the resonant wavelength, while the TM mode can directly output from the through port. Simulation results show that the extinction ratio of the proposed P-DEMUX for TE and TM modes are 33.21 dB and 24.97 dB, and the insertion losses are 0.346 dB and 0.324 dB, respectively, at the wavelength of 1551.64 nm. Furthermore, the device shows a broad bandwidth(> 100 nm) for an extinction ratio(ER) of > 20 dB. In addition, the proposed P-DEMUX also has a good fabrication tolerance for the waveguide width variation of-20 nm≤ △w_(g)≤ 20 nm and the microring width variation of -20 nm≤ △w_(r) ≤20 nm for a low insertion loss of < 0.75 dB and low ER of <-18 dB.