Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector corr...Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector correlation of the ion-molecule reactions D- + H2 and H- + D2 is studied at a collision energy of 35.7 kcal/mol. Four generalized polarization-dependent differential cross sections (2π/σ) (dσ00/dωt), (2π/σ) (dσ20/dσ20), (27π/σ) (dσ22+/dwt), and (2π/σ)(dπ/σ) are presented in the centre-of-mass reference frame, separately. At the same time, the effects on the product angular distributions P(θr), P(~r) and P(Oφ) of the title reactions are also analysed. The calculated results show that the scattering tendencies of the product HD, the alignment and the orientation of j^1 sensitively depend on reagent molecule vibration.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.11074103)the Discipline ConstructionFund of Ludong University,China
文摘Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector correlation of the ion-molecule reactions D- + H2 and H- + D2 is studied at a collision energy of 35.7 kcal/mol. Four generalized polarization-dependent differential cross sections (2π/σ) (dσ00/dωt), (2π/σ) (dσ20/dσ20), (27π/σ) (dσ22+/dwt), and (2π/σ)(dπ/σ) are presented in the centre-of-mass reference frame, separately. At the same time, the effects on the product angular distributions P(θr), P(~r) and P(Oφ) of the title reactions are also analysed. The calculated results show that the scattering tendencies of the product HD, the alignment and the orientation of j^1 sensitively depend on reagent molecule vibration.