Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The ex...Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.展开更多
The properties of the polarization sensitized material with the wide possibilities,on the basis of azo-dye doped polymers,are reviewed and analyzed shortly.Some experimental results obtained on these materials in the ...The properties of the polarization sensitized material with the wide possibilities,on the basis of azo-dye doped polymers,are reviewed and analyzed shortly.Some experimental results obtained on these materials in the polarization holography andphotography on the basis of Weigert’s effect are briefly described.In particular,with the help of these materials,the results ofholographic recording and reconstruction of the polarization characteristics of the light field have been significantly improved.Wereobtained holographic diffractive optical elements with the highest diffraction efficiency,such as diffraction gratings and zone plates(Fresnel lenses),which have no analogues among the known ones.Was observed self-recording phenomenon in a dynamicholographic recording and recovery process.The prospects of using the given materials in the photography for obtaining polarimetricimages of various objects,including celestial bodies,were shown.展开更多
Active metasurfaces have recently attracted more attention since they can make the light manipulation be versatile and real-time. Metasurfaces-based holography possesses the advantages of high spatial resolution and e...Active metasurfaces have recently attracted more attention since they can make the light manipulation be versatile and real-time. Metasurfaces-based holography possesses the advantages of high spatial resolution and enormous information capacity for applications in optical displays and encryption. In this work, a tunable polarization multiplexing holographic metasurface controlled by an external magnetic field is proposed. The elaborately designed nanoantennas are arranged on the magneto-optical intermediate layer, which is placed on the metallic reflecting layer. Since the non-diagonal elements of the dielectric tensor of the magneto-optical material become non-zero values once the external magnetic field is applied,the differential absorption for the left and right circularly polarized light can be generated. Meanwhile, the amplitude and phase can be flexibly modulated by changing the sizes of the nanoantennas. Based on this, the dynamic multichannel holographic display of metasurface in the linear and circular polarization channels is realized via magnetic control, and it can provide enhanced security for optical information storage. This work paves the way for the realization of magnetically controllable phase modulation, which is promising in dynamic wavefront control and optical information encryption.展开更多
Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties.Although orthogonal matrices based on amplitude or phase combinations have been extensivel...Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties.Although orthogonal matrices based on amplitude or phase combinations have been extensively explored,the orthogonal matrix of polarization combinations(OMPC)is a novel,relatively unexplored concept.Herein,we propose a method for constructing OMPCs of any dimension encompassing 4n(where n is 1,2,4,8,…)mutually orthogonal 2ncomponent polarization combinations.In the field of holography,the integration of polarization multiplexing techniques with polarization-sensitive materials is expected to emerge as a groundbreaking approach for multichannel hologram multiplexing,offering considerable enhancements in data storage capacity and security.A multidimensional OMPC enables the realization of multichannel multiplexing and dynamical modulation of information in polarization holographic recording.Despite consolidating all information into a single position within the material,we effectively avoided extraneous crosstalk during the reconstruction process.Our results show that achieving four distinct holographic images individually and simultaneously depends on the polarization combination represented by the incident wave.This discovery opens up a new avenue for achieving highly holographic information storage and dynamically displayed information,harnessing the potential of OMPC to expand the heretofore limited dimensionality of orthogonal polarization.展开更多
Planar and ultrathin liquid crystal(LC)polarization optical elements have found promising applications in augmented reality(AR),virtual reality(VR),and photonic devices.In this paper,we give a comprehensive review on ...Planar and ultrathin liquid crystal(LC)polarization optical elements have found promising applications in augmented reality(AR),virtual reality(VR),and photonic devices.In this paper,we give a comprehensive review on the operation principles,device fabrication,and performance of these optical elements.Optical simulations methods for optimizing the device performance are discussed in detail.Finally,some potential applications of these devices in AR and VR systems are illustrated and analyzed.展开更多
基金supports from National Key R&D Program of China(2018YFA0701800)Project of Fujian Province Major Science and Technology(2020HZ01012).
文摘Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.
文摘The properties of the polarization sensitized material with the wide possibilities,on the basis of azo-dye doped polymers,are reviewed and analyzed shortly.Some experimental results obtained on these materials in the polarization holography andphotography on the basis of Weigert’s effect are briefly described.In particular,with the help of these materials,the results ofholographic recording and reconstruction of the polarization characteristics of the light field have been significantly improved.Wereobtained holographic diffractive optical elements with the highest diffraction efficiency,such as diffraction gratings and zone plates(Fresnel lenses),which have no analogues among the known ones.Was observed self-recording phenomenon in a dynamicholographic recording and recovery process.The prospects of using the given materials in the photography for obtaining polarimetricimages of various objects,including celestial bodies,were shown.
基金supported by the National Key R&D Program of China (Nos. 2021YFB2801803 and 2021YFA1401200)the Natural Science Foundation of Shandong Province(No. ZR2023LZH001)+3 种基金the Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910007022)the National Natural Science Foundation of China (Nos. U21A20140 and 92050117)the Fok Ying-Tong Education Foundation of China(No. 161009)the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park (No. Z211100004821009)。
文摘Active metasurfaces have recently attracted more attention since they can make the light manipulation be versatile and real-time. Metasurfaces-based holography possesses the advantages of high spatial resolution and enormous information capacity for applications in optical displays and encryption. In this work, a tunable polarization multiplexing holographic metasurface controlled by an external magnetic field is proposed. The elaborately designed nanoantennas are arranged on the magneto-optical intermediate layer, which is placed on the metallic reflecting layer. Since the non-diagonal elements of the dielectric tensor of the magneto-optical material become non-zero values once the external magnetic field is applied,the differential absorption for the left and right circularly polarized light can be generated. Meanwhile, the amplitude and phase can be flexibly modulated by changing the sizes of the nanoantennas. Based on this, the dynamic multichannel holographic display of metasurface in the linear and circular polarization channels is realized via magnetic control, and it can provide enhanced security for optical information storage. This work paves the way for the realization of magnetically controllable phase modulation, which is promising in dynamic wavefront control and optical information encryption.
基金financial supports from National Key Research and Development Program of China(2018YFA0701800)Fujian Province Major Science and Technology Program(2020HZ01012)+1 种基金National Natural Science Foundation of China(NSFC)(U22A2080)China Scholarship Council(202109107007).
文摘Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties.Although orthogonal matrices based on amplitude or phase combinations have been extensively explored,the orthogonal matrix of polarization combinations(OMPC)is a novel,relatively unexplored concept.Herein,we propose a method for constructing OMPCs of any dimension encompassing 4n(where n is 1,2,4,8,…)mutually orthogonal 2ncomponent polarization combinations.In the field of holography,the integration of polarization multiplexing techniques with polarization-sensitive materials is expected to emerge as a groundbreaking approach for multichannel hologram multiplexing,offering considerable enhancements in data storage capacity and security.A multidimensional OMPC enables the realization of multichannel multiplexing and dynamical modulation of information in polarization holographic recording.Despite consolidating all information into a single position within the material,we effectively avoided extraneous crosstalk during the reconstruction process.Our results show that achieving four distinct holographic images individually and simultaneously depends on the polarization combination represented by the incident wave.This discovery opens up a new avenue for achieving highly holographic information storage and dynamically displayed information,harnessing the potential of OMPC to expand the heretofore limited dimensionality of orthogonal polarization.
文摘Planar and ultrathin liquid crystal(LC)polarization optical elements have found promising applications in augmented reality(AR),virtual reality(VR),and photonic devices.In this paper,we give a comprehensive review on the operation principles,device fabrication,and performance of these optical elements.Optical simulations methods for optimizing the device performance are discussed in detail.Finally,some potential applications of these devices in AR and VR systems are illustrated and analyzed.