An electro absorption modulator is fabricated for optical network system.The strained InGaAs/InAlAs MQW shows improved modulation properties,including polarization independent,high extinction ratio (>40dB) and low...An electro absorption modulator is fabricated for optical network system.The strained InGaAs/InAlAs MQW shows improved modulation properties,including polarization independent,high extinction ratio (>40dB) and low capacitance (<0 5pF),with which,an ultra high frequency(>10GHz) can be obtained.展开更多
We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields...We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.展开更多
The recent era of fast optical manipulation and optical devices owe a lot to exciton-polaritons being lighter in mass,faster in speed and stronger in nonlinearity due to hybrid light-matter characteristics.The room te...The recent era of fast optical manipulation and optical devices owe a lot to exciton-polaritons being lighter in mass,faster in speed and stronger in nonlinearity due to hybrid light-matter characteristics.The room temperature existence of polaritons in two dimensional materials opens up new avenues to the design and analysis of all optical devices and has gained the researchers attention.Here,spin-selective optical Stark effect is introduced to form a waveguide effect in uniform community of polaritons,and is used to realize polarization modulation of polaritons.The proposed device basically takes advantage of the spin-sensitive properties of optical Stark effect of polaritons inside the WS_(2)microcavity so as to guide different modes and modulate polarization of polaritons.It is shown that polaritonic wavepacket of different mode profiles can be generated by changing intensity of the optical Stark beam and the polarization of polaritons can be controlled and changed periodically along the formed waveguide by introduction birefringence that is sensitive to polarization degree of the optical Stark beam.展开更多
In order to generate optical Ultra- Wideband (UWB) pulse train with a switchable shape, a novel method based on a Polarization Modulator (PolM), a Polarization Controller (PC) and a delay line, is proposed and e...In order to generate optical Ultra- Wideband (UWB) pulse train with a switchable shape, a novel method based on a Polarization Modulator (PolM), a Polarization Controller (PC) and a delay line, is proposed and experimentally demonstrated. Experimental results show that when a Gaussian pulse is applied to the PolM, under different phase shifts introduced by the PC, a gauss or gauss doublet pulse will be generated at the output of the Polarization Beam Splitter (PBS). If the two- path signals after PBS are properly delayed, Gaussian monocycles or third-order gauss pulses will be generated at the output of the Polarization Beam Combiner (PBC).展开更多
A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency o...A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8?GHz, and the single sideband phase noise of the fundamental signal is lower than -100dBc/Hz at an offset of 10?kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10?GHz is 2.39×10^-9.展开更多
Polarization coding is a specific encoding method by using the polarization state of optical signal carrying coded in- formation. It focuses on nonlinear effects, polarization mode dispersion and other issues in high-...Polarization coding is a specific encoding method by using the polarization state of optical signal carrying coded in- formation. It focuses on nonlinear effects, polarization mode dispersion and other issues in high-speed fiber-optic communi- cations. This paper presents a measurement method for polarization state based on elastic-optic modulator. This method not only retains the original advantages of elastic-optic modulator for polarization measurement, but also overcomes the defects of existing methods including high modulation frequency and invalid collection by using array detector. Matlab simulation and experimental verification scheme are given. The feasibility of this method is verified through theoretical analysis, and simulation and experimental results are carried out. The error analysis of the measurement results shows that the method can meet the measurement requirements and provide conditions for using the polarization encoding in high-speed communication.展开更多
A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intens...A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intensity excitation meth- ods used in SERF magnetometer, the light polarization modulation method has a high stability in low-frequency range, which indicates a more accurate transverse relaxation measurement.展开更多
Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structur...Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structured light beams is usually generated using several polarization and spatial phase devices,which decreases the configurability of optical systems.Here,we have designed a kind of polarized optical multi-vortices generator based on the Stokes-Mueller formalism and cross-phase modulation.In our scheme,multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam.The polarization states and orbital angular momentum of the generated light beams are all-optically controllable.Furthermore,the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.展开更多
As a new three-dimensional(3-D)modulation,Polarization Quadrature Amplitude Modulation(PQAM) can be regarded as the combination of Pulse amplitude modulation(PAM) and Quadrature Amplitude Modulation(QAM) Modulation.It...As a new three-dimensional(3-D)modulation,Polarization Quadrature Amplitude Modulation(PQAM) can be regarded as the combination of Pulse amplitude modulation(PAM) and Quadrature Amplitude Modulation(QAM) Modulation.It can better improve the digital communication efficiency and reduce the Symbol error rate(SER) of the system than one-dimensional or two-dimensional modulation scheme.How to design a feasible constellation is the most concerned problem of PQAM currently.This paper first studies the relationship between the SER theoretical value of PQAM and the distribution of M and N,proposes a new M,N allocation scheme.Secondly,a new and straightforward design method of constructing higher-level 3-D signal constellations,which can be matched with the PQAM,and the constellation can divided into three different structures according to the ary for PQAM.Finally,the simulation results show that:in PQAM system,the modulation scheme and the constellation mapping scheme are proposed in this paper which can effectively reduce the system SER and improve the anti-noise performance of the system.展开更多
In this paper,we propose a new fluorescence emission difference microscopy(FED)technique based on polarization modulation.An electro-optical modulator(EOM)is used to switch the excitation beam between the horizontal a...In this paper,we propose a new fluorescence emission difference microscopy(FED)technique based on polarization modulation.An electro-optical modulator(EOM)is used to switch the excitation beam between the horizontal and vertical polarization states at a high frequency,which leads to solid-and donut-shaped beams after spatial light modulation.Experiment on the fluorescent nanoparticles demonstrates that the proposed method can achieve~λ=4 spatial resolution.Using the proposed system,the dynamic imaging of subcellular structures in living cells over time is achieved.展开更多
We present a nonlinear event-driven model of a Digital PLL used in the context of a polar modulation. This modeling has shown that the estimation method of the TDC gain has a big impact on the EVM for wideband modulat...We present a nonlinear event-driven model of a Digital PLL used in the context of a polar modulation. This modeling has shown that the estimation method of the TDC gain has a big impact on the EVM for wideband modulation and a solution has been proposed which consists to add the modulation on the gain after calibration of the gain offset. This transforms the classical two-points modulator into a three-points modulator. This implementation has been validated for WCDMA standard.展开更多
Periodical polarization modulation scheme is proposed to suppress timing jitters induced by frequency fluctuations between two polarization components of solitons. In periodical polarization modulation scheme, the pol...Periodical polarization modulation scheme is proposed to suppress timing jitters induced by frequency fluctuations between two polarization components of solitons. In periodical polarization modulation scheme, the polarization states of the soliton are modulated to excite equally for suppressing timing jitters induced by two unequal polarization components in the soliton trapping. Moreover, polarization modulation can weaken the effect of random birefringence on the soliton pulses in each relay distance. The numerical result shows that the soliton timing jitters are suppressed by our proposed method.展开更多
We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photo...We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.展开更多
Fluorescence polarization is related to the dipole orientation of chromophores,making fuores-cence polarization microscopy possible to_reveal structures and functions of tagged cellularorganelles and biological macrom...Fluorescence polarization is related to the dipole orientation of chromophores,making fuores-cence polarization microscopy possible to_reveal structures and functions of tagged cellularorganelles and biological macromolecules.Several recent super resolution techniques have beenapplied to fluorescence polarization microscopy,achieving dipole measurement at nanoscale.In this review,we summarize both difraction limited and super resolution fluorescence polari-zation microscopy techniques,as well as their applications in biological imaging.展开更多
The rotation control of particles in optical tweezers is often subject to the spin or orbit angular momentum induced optical torque,which is susceptible to the mechanical and morphological properties of individual par...The rotation control of particles in optical tweezers is often subject to the spin or orbit angular momentum induced optical torque,which is susceptible to the mechanical and morphological properties of individual particle.Here we report on a robust and high-speed rotation control in optical tweezers by using a novel linear polarization synthesis based on optical heterodyne interference between two circularly polarized lights with opposite handedness.The synthesized linear polarization can be rotated in a hopping-free scheme at arbitrary speed determined electronically by the heterodyne frequency between two laser fields.The experimental demonstration of a trapped vaterite particle in water shows that the precisely controlled rotation frequency of 300 Hz can be achieved.The proposed method will find promising applications in optically driven micro-gears,fluidic pumps and rotational micro-rheology.展开更多
Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The ex...Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.展开更多
After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the cod...After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.展开更多
With the distinct advantages of high resolution,small pixel size,and multi-level pure phase modulation,liquid crystal on silicon(LCoS)devices afford precise and reconfigurable spatial light modulation that enables ver...With the distinct advantages of high resolution,small pixel size,and multi-level pure phase modulation,liquid crystal on silicon(LCoS)devices afford precise and reconfigurable spatial light modulation that enables versatile applications ranging from micro-displays to optical communications.However,LCoS devices suffer from a long-standing problem of polarization-dependent response in that they only perform phase modulation on one linear polarization of light,and polarization-independent phase modulation-essential for most applications-have had to use complicated polarization-diversity optics.We propose and demonstrate,for the first time,an LCos device that directly achieves high-performance polarization-independent phase modulation at telecommunication wavelengths with 4K resolution and beyond by embedding a polarization-rotating metasurface between the LCoS backplane and the liquid crystal phase-modulating layer.We verify the device with a number of typical polarization-independent application functions including beam steering,holographical display,and in a key optical switching element-wavelength selective switch(WsS),demonstrating the significant benefits in terms of both configuration simplification and performance improvement.展开更多
We theoretically and experimentally study the polarization and phase control of two-photon absorption in an isotropic molecular system. We theoretically show that the two-photon transition probability decreases when t...We theoretically and experimentally study the polarization and phase control of two-photon absorption in an isotropic molecular system. We theoretically show that the two-photon transition probability decreases when the laser polarization changes from linear through elliptical to circular, and the laser polarization does not affect the control efficiency of two-photon transition probability by shaping the spectral phase. These theoretical results are experimentally confirmed in coumarin 480. Furthermore, we propose that the combination of the laser polarization with the spectral phase modulation can further increase the control efficiency of the two-photon absorption.展开更多
文摘An electro absorption modulator is fabricated for optical network system.The strained InGaAs/InAlAs MQW shows improved modulation properties,including polarization independent,high extinction ratio (>40dB) and low capacitance (<0 5pF),with which,an ultra high frequency(>10GHz) can be obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074135,12104388,and 52272219)Nanyang Normal University,the Natural Science Foundation of Henan Province (Grant Nos.222300420255 and 232300421220)the Key Scientific and Technological Projiect of Technology Depeartment of Henan Province of China (Grant Nos.222102230105 and 212102210448)。
文摘We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.
基金the National Natural Science Foundation of China(Grant Nos.11974071,61575040 and 61811530062)in part by Sichuan Science and Technology Program(Grant No.2018HH0148).
文摘The recent era of fast optical manipulation and optical devices owe a lot to exciton-polaritons being lighter in mass,faster in speed and stronger in nonlinearity due to hybrid light-matter characteristics.The room temperature existence of polaritons in two dimensional materials opens up new avenues to the design and analysis of all optical devices and has gained the researchers attention.Here,spin-selective optical Stark effect is introduced to form a waveguide effect in uniform community of polaritons,and is used to realize polarization modulation of polaritons.The proposed device basically takes advantage of the spin-sensitive properties of optical Stark effect of polaritons inside the WS_(2)microcavity so as to guide different modes and modulate polarization of polaritons.It is shown that polaritonic wavepacket of different mode profiles can be generated by changing intensity of the optical Stark beam and the polarization of polaritons can be controlled and changed periodically along the formed waveguide by introduction birefringence that is sensitive to polarization degree of the optical Stark beam.
基金supported by the National Key Basic Research Program of China(973Program)under Grant No.2012CB315603the National Natural Science Foundation of China under Grants No.61032005,No.61177065,No.61174199the Jiangsu Province Science Foundation under Grant No.BK2012058
文摘In order to generate optical Ultra- Wideband (UWB) pulse train with a switchable shape, a novel method based on a Polarization Modulator (PolM), a Polarization Controller (PC) and a delay line, is proposed and experimentally demonstrated. Experimental results show that when a Gaussian pulse is applied to the PolM, under different phase shifts introduced by the PC, a gauss or gauss doublet pulse will be generated at the output of the Polarization Beam Splitter (PBS). If the two- path signals after PBS are properly delayed, Gaussian monocycles or third-order gauss pulses will be generated at the output of the Polarization Beam Combiner (PBC).
基金Supported by the National Natural Science Foundation of China under Grant No 61675196the National Basic Research Program of China under Grant No 2014CB340102+1 种基金the National High-Tech Research and Development Program of China under Grant No 2015AA016903the Open Research of Beijing University of Posts and Telecommunications under Grant No IOOC2013A002
文摘A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8?GHz, and the single sideband phase noise of the fundamental signal is lower than -100dBc/Hz at an offset of 10?kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10?GHz is 2.39×10^-9.
文摘Polarization coding is a specific encoding method by using the polarization state of optical signal carrying coded in- formation. It focuses on nonlinear effects, polarization mode dispersion and other issues in high-speed fiber-optic communi- cations. This paper presents a measurement method for polarization state based on elastic-optic modulator. This method not only retains the original advantages of elastic-optic modulator for polarization measurement, but also overcomes the defects of existing methods including high modulation frequency and invalid collection by using array detector. Matlab simulation and experimental verification scheme are given. The feasibility of this method is verified through theoretical analysis, and simulation and experimental results are carried out. The error analysis of the measurement results shows that the method can meet the measurement requirements and provide conditions for using the polarization encoding in high-speed communication.
基金Project supported by the National Natural Science Foundation of China(Grant No.61227902)the National Key R&D Program of China(Grant No.2017YFB0503100)the Natural Science Foundation of Beijing Municipality,China(Grant No.4162038)
文摘A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intensity excitation meth- ods used in SERF magnetometer, the light polarization modulation method has a high stability in low-frequency range, which indicates a more accurate transverse relaxation measurement.
基金Project supported by the National Natural Science Foundation of China (Grant No.92050116)。
文摘Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structured light beams is usually generated using several polarization and spatial phase devices,which decreases the configurability of optical systems.Here,we have designed a kind of polarized optical multi-vortices generator based on the Stokes-Mueller formalism and cross-phase modulation.In our scheme,multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam.The polarization states and orbital angular momentum of the generated light beams are all-optically controllable.Furthermore,the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.
基金supported in part by the National Natural Science Foundation of China (61561039, 61271177, and 61461044)
文摘As a new three-dimensional(3-D)modulation,Polarization Quadrature Amplitude Modulation(PQAM) can be regarded as the combination of Pulse amplitude modulation(PAM) and Quadrature Amplitude Modulation(QAM) Modulation.It can better improve the digital communication efficiency and reduce the Symbol error rate(SER) of the system than one-dimensional or two-dimensional modulation scheme.How to design a feasible constellation is the most concerned problem of PQAM currently.This paper first studies the relationship between the SER theoretical value of PQAM and the distribution of M and N,proposes a new M,N allocation scheme.Secondly,a new and straightforward design method of constructing higher-level 3-D signal constellations,which can be matched with the PQAM,and the constellation can divided into three different structures according to the ary for PQAM.Finally,the simulation results show that:in PQAM system,the modulation scheme and the constellation mapping scheme are proposed in this paper which can effectively reduce the system SER and improve the anti-noise performance of the system.
基金supported in part by the National Natural Science Foundation of China(61827825,62125504,and 61735017)Major Program of the Natural Science Foundation of Zhejiang Province(LD21F050002)+2 种基金Key Research and Development Program of Zhejiang Province(2020C01116)Zhejiang Lab(2020MC0AE01)China Postdoctoral Science Foundation(BX2021272).
文摘In this paper,we propose a new fluorescence emission difference microscopy(FED)technique based on polarization modulation.An electro-optical modulator(EOM)is used to switch the excitation beam between the horizontal and vertical polarization states at a high frequency,which leads to solid-and donut-shaped beams after spatial light modulation.Experiment on the fluorescent nanoparticles demonstrates that the proposed method can achieve~λ=4 spatial resolution.Using the proposed system,the dynamic imaging of subcellular structures in living cells over time is achieved.
文摘We present a nonlinear event-driven model of a Digital PLL used in the context of a polar modulation. This modeling has shown that the estimation method of the TDC gain has a big impact on the EVM for wideband modulation and a solution has been proposed which consists to add the modulation on the gain after calibration of the gain offset. This transforms the classical two-points modulator into a three-points modulator. This implementation has been validated for WCDMA standard.
基金Natural Science Foundation of Guangdong Province(04010397) Natural Science Foundation of FoshanUniversity , China
文摘Periodical polarization modulation scheme is proposed to suppress timing jitters induced by frequency fluctuations between two polarization components of solitons. In periodical polarization modulation scheme, the polarization states of the soliton are modulated to excite equally for suppressing timing jitters induced by two unequal polarization components in the soliton trapping. Moreover, polarization modulation can weaken the effect of random birefringence on the soliton pulses in each relay distance. The numerical result shows that the soliton timing jitters are suppressed by our proposed method.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096,11604199,U1704145 and 11747101the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500+1 种基金the Henan Provincial Natural Science Foundation of China under Grant No 182102210117the Higher Education Key Program of He’nan Province of China under Grant Nos 17A140025 and 16A140030
文摘We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.
基金supported by the National Instrument Development Special Program(2013YQ03065102)the Natural Science Foundation of China(614-75010,61428501)Science and Technology Commission of Shanghai Municipality(16DZ-1100300).
文摘Fluorescence polarization is related to the dipole orientation of chromophores,making fuores-cence polarization microscopy possible to_reveal structures and functions of tagged cellularorganelles and biological macromolecules.Several recent super resolution techniques have beenapplied to fluorescence polarization microscopy,achieving dipole measurement at nanoscale.In this review,we summarize both difraction limited and super resolution fluorescence polari-zation microscopy techniques,as well as their applications in biological imaging.
基金the National Natural Science Foundation of China(91750203 and 91850111)State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences and the High-performance Computing Platform of Peking University.
文摘The rotation control of particles in optical tweezers is often subject to the spin or orbit angular momentum induced optical torque,which is susceptible to the mechanical and morphological properties of individual particle.Here we report on a robust and high-speed rotation control in optical tweezers by using a novel linear polarization synthesis based on optical heterodyne interference between two circularly polarized lights with opposite handedness.The synthesized linear polarization can be rotated in a hopping-free scheme at arbitrary speed determined electronically by the heterodyne frequency between two laser fields.The experimental demonstration of a trapped vaterite particle in water shows that the precisely controlled rotation frequency of 300 Hz can be achieved.The proposed method will find promising applications in optically driven micro-gears,fluidic pumps and rotational micro-rheology.
基金supports from National Key R&D Program of China(2018YFA0701800)Project of Fujian Province Major Science and Technology(2020HZ01012).
文摘Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.
基金supported in part by the Key Program of National Natural Science Foundation of China (No.92067202)in part by the National Natural Science Foundation of China (No.62071058)in part by the Major Key Project of PCL (PCL2021A15)。
文摘After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.
基金supported by the National Key Research and Development Program of China(2019YFA0706302,2018YFB1801803,2021YFB3600300)Huawei-Sun Yat-sen University Technical Cooperation Project(TC20210311006)+2 种基金Basic and Applied Basic Research Foundation of Guangdong Province(2021B1515020093,2021B1515120057)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X121)National Natural Science Foundation of China(11774437,61975202).
文摘With the distinct advantages of high resolution,small pixel size,and multi-level pure phase modulation,liquid crystal on silicon(LCoS)devices afford precise and reconfigurable spatial light modulation that enables versatile applications ranging from micro-displays to optical communications.However,LCoS devices suffer from a long-standing problem of polarization-dependent response in that they only perform phase modulation on one linear polarization of light,and polarization-independent phase modulation-essential for most applications-have had to use complicated polarization-diversity optics.We propose and demonstrate,for the first time,an LCos device that directly achieves high-performance polarization-independent phase modulation at telecommunication wavelengths with 4K resolution and beyond by embedding a polarization-rotating metasurface between the LCoS backplane and the liquid crystal phase-modulating layer.We verify the device with a number of typical polarization-independent application functions including beam steering,holographical display,and in a key optical switching element-wavelength selective switch(WsS),demonstrating the significant benefits in terms of both configuration simplification and performance improvement.
基金Project partly supported by the Science Foundation of the Ministry of Education of China(Grant No.30800)the National Natural Science Foundation of China(Grant Nos.11004060 and 11027403)the Shanghai Municipal Science and Technology Commission,China(Grant Nos.10XD1401800,09142200501,09ZR1409300,09JC1404700,and 10JC1404500)
文摘We theoretically and experimentally study the polarization and phase control of two-photon absorption in an isotropic molecular system. We theoretically show that the two-photon transition probability decreases when the laser polarization changes from linear through elliptical to circular, and the laser polarization does not affect the control efficiency of two-photon transition probability by shaping the spectral phase. These theoretical results are experimentally confirmed in coumarin 480. Furthermore, we propose that the combination of the laser polarization with the spectral phase modulation can further increase the control efficiency of the two-photon absorption.