In this paper, the evaluation by running window smoothing is used for the digital processing of the polarization of geophysical ULF signals. The observed signals are resolved into two orthogonal complex components so ...In this paper, the evaluation by running window smoothing is used for the digital processing of the polarization of geophysical ULF signals. The observed signals are resolved into two orthogonal complex components so that it is no longer necessary to consider the phase and amplitude of the signals simultaneously.展开更多
The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of a...The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.展开更多
We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in...We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in this paper. Based on this model, we investigate the optimized operating parameters of the proposed system by simulating the output intensity of the probe light as functions of the input polarization angle, the phase induced by the polarization controller, and the ori- entation of the polarization beam splitter. The simulated results show that we can obtain a good linear slope and a large linear dynamic range,which is suitable for all-optical sampling. The operating power of the pump light can be less than lmW. The presented all-optical sampling method can potentially operate at a sampling rate up to hundreds GS/s and needs low optical power.展开更多
The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), f...The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), frequency and polarization is presented for plane-wave signals. The direct sampling and the corresponding delayed sampling data are used to construct the data correlation matrix. On the basis of the subspace theory and the least square method, the frequency and the steering vector of the whole array are obtained. According to the relationship of the array manifold vector between electric dipoles and magnetic loops,the polarization parameters are given. The unambiguous phase estimates are acquired by applying virtual baseline array transformation to the spatial steering vectors, and they are used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two adjacent array elements on the array,then the high accuracy DOA estimates are obtained. Closed-form solutions for each parameter are obtained. This method has advantages of lower calculation complexity and no parameter matching. The experiment results verify the effectiveness and feasibility of the presented algorithm.展开更多
Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading condition...Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading conditions are available at the receiver. However, increasing the number of transmit antennas increases the required training interval and reduces the available time in which data may be transmitted before the fading coefficients change. In this paper, a vertical layered space-time code is proposed. By applying the subspace method to the layered space-time code, the symbols can be detected without training symbols and channel estimates at the transmitter or the receiver. Monte Carlo simulations show that performance can approach that of the detection method with the knowledge of the channel.展开更多
Based on the ambiguity function, a novel signal processing method for the polarization measurement radar is developed. One advantage of this method is that the two orthogonal polarized signals do not have to be perpen...Based on the ambiguity function, a novel signal processing method for the polarization measurement radar is developed. One advantage of this method is that the two orthogonal polarized signals do not have to be perpendicular to each other, which is required by traditional methods. The error due to the correlation of the two transmitting signals in the traditional method, can be reduced by this new approach. A concept called ambiguity function matrix (AFM) is introduced based on this method. AFM is a promising tool for the signal selection and design in the polarization scattering matrix measurement. The waveforms of the polarimetric radar are categorized and analyzed based on AFM in this paper. The signal processing flow of this method is explained. And the polarization scattering matrix measurement performance is testified by simulation. Furthermore, this signal processing method can be used in the inter-pulse interval measurement technique as well as in the instantaneous measurement technique.展开更多
This paper addresses the problem of direction-of-arrival (DOA) and polarization estima- tion with polarization sensitive arrays (PSA), which has been a hot topic in the area of array signal processing during the p...This paper addresses the problem of direction-of-arrival (DOA) and polarization estima- tion with polarization sensitive arrays (PSA), which has been a hot topic in the area of array signal processing during the past two or three decades. The sparse Bayesian learning (SBL) technique is introduced to exploit the sparsity of the incident signals in space to solve this problem and a new method is proposed by reconstructing the signals from the array outputs first and then exploit- ing the reconstructed signals to realize parameter estimation. Only 1-D searching and numerical calculations are contained in the proposed method, which makes the proposed method computa- tionally much efficient. Based on a linear array consisting of identically structured sensors, the proposed method can be used with slight modifications in PSA with different polarization structures. It also performs well in the presence of coherent signals or signals with different degrees of polarization. Simulation results are given to demonstrate the parameter estimation precision of the proposed method.展开更多
针对目前极化敏感面阵空域-极化域联合谱估计运算量大、耗时长的问题,提出一种降维求根MUSIC(Multiple Signal Classification)优化算法。通过对接收信号进行降维处理,提出新的求解模型将传统四维MUSIC转化为两个一维求根MUSIC求解空域...针对目前极化敏感面阵空域-极化域联合谱估计运算量大、耗时长的问题,提出一种降维求根MUSIC(Multiple Signal Classification)优化算法。通过对接收信号进行降维处理,提出新的求解模型将传统四维MUSIC转化为两个一维求根MUSIC求解空域波达方向和引用已求解出的空域信息结合拉格朗日乘子法解决来波信号极化信息估计问题。相比传统的4D-MUSIC和秩亏MUSIC,所提算法在不损失估计精度的前提下提高了运算速度,降低了运算复杂度,无需谱峰搜索过程,消除了因搜索步长而导致的量化误差。对日后大规模阵列计算及MIMO(Multiple Input Multiple Output)雷达引入提供快速求解方法。仿真实验表明,所提算法在低信噪比0 dB下空域误差约为0.85°,速度相比秩亏MUSIC提升了约64.7%,验证了该算法的有效性和高精度性。展开更多
Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-opti...Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus on applications such as modulation format conversion, differential phase-shift keying (DPSK) demodulation, modulation speed enhancement of directly modulated lasers (DMLs), and monocycle pulse generation. The possibility to implement polarization diversity circuits, which reduce the polarization dependence of standard silicon MRRs, is illustrated on the particular example of DPSK demodulation.展开更多
Polarization dependent loss (PDL) has been recognized as a critical issue because various inline optical components may have nonnegligible PDL effect that interacts with polarization mode dispersion (PMD). We inve...Polarization dependent loss (PDL) has been recognized as a critical issue because various inline optical components may have nonnegligible PDL effect that interacts with polarization mode dispersion (PMD). We investigated the impact of PMD-PDL interaction on degree of polarization (DOP), which is the most commonly used feedback signal in PMD compensation. The simulation results of a 40-Gb/s NRZ code optical transmission system show that the maximum PMD increases from approximately 40 ps to more than 45 ps, while minimum DOP declines from approximately 0.6 to approximately 0.2. The interaction of PMD and PDL also induces residual PMD underestimation of 5-8 ps, which causes degradation of PMD compensation performance.展开更多
为了有效辅助跳频(FH)网台分选和信号识别、跟踪,该文用正交偶极子对构造极化敏感阵列,基于空间极化时频分析,在欠定条件下实现了多跳频信号波达方向(Direction Of Arrival,DOA)与极化状态的高效联合估计。首先建立跳频信号的极化敏感...为了有效辅助跳频(FH)网台分选和信号识别、跟踪,该文用正交偶极子对构造极化敏感阵列,基于空间极化时频分析,在欠定条件下实现了多跳频信号波达方向(Direction Of Arrival,DOA)与极化状态的高效联合估计。首先建立跳频信号的极化敏感阵列观察模型,然后根据参考阵元时频分析结果建立各跳信号的空间极化时频分布矩阵,再利用该矩阵中蕴含的信号极化-空域特征信息分别运用线性、二次型空间极化时频以及多项式求根共3种方法实现DOA与极化参数联合估计,最后蒙特卡罗仿真结果验证了该算法的有效性。展开更多
基金Supported by National Natural Science Foundation of China
文摘In this paper, the evaluation by running window smoothing is used for the digital processing of the polarization of geophysical ULF signals. The observed signals are resolved into two orthogonal complex components so that it is no longer necessary to consider the phase and amplitude of the signals simultaneously.
文摘The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.
文摘We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in this paper. Based on this model, we investigate the optimized operating parameters of the proposed system by simulating the output intensity of the probe light as functions of the input polarization angle, the phase induced by the polarization controller, and the ori- entation of the polarization beam splitter. The simulated results show that we can obtain a good linear slope and a large linear dynamic range,which is suitable for all-optical sampling. The operating power of the pump light can be less than lmW. The presented all-optical sampling method can potentially operate at a sampling rate up to hundreds GS/s and needs low optical power.
基金supported by the National Natural Science Foundation of China(6120129561231017)the Fundamental Research Funds for the Central Universities(K5051307017)
文摘The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), frequency and polarization is presented for plane-wave signals. The direct sampling and the corresponding delayed sampling data are used to construct the data correlation matrix. On the basis of the subspace theory and the least square method, the frequency and the steering vector of the whole array are obtained. According to the relationship of the array manifold vector between electric dipoles and magnetic loops,the polarization parameters are given. The unambiguous phase estimates are acquired by applying virtual baseline array transformation to the spatial steering vectors, and they are used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two adjacent array elements on the array,then the high accuracy DOA estimates are obtained. Closed-form solutions for each parameter are obtained. This method has advantages of lower calculation complexity and no parameter matching. The experiment results verify the effectiveness and feasibility of the presented algorithm.
基金Partially supported by the National Natural Sciences Foundation (No.69872029) and the Research Fund for Doctoral Program of Higher Education (No.1999069808) of China
文摘Vertical layered space-time codes have demonstrated the enormous potential to accommodate rapid flow data. Thus far, vertical layered space-time codes assumed that perfect estimates of current channel fading conditions are available at the receiver. However, increasing the number of transmit antennas increases the required training interval and reduces the available time in which data may be transmitted before the fading coefficients change. In this paper, a vertical layered space-time code is proposed. By applying the subspace method to the layered space-time code, the symbols can be detected without training symbols and channel estimates at the transmitter or the receiver. Monte Carlo simulations show that performance can approach that of the detection method with the knowledge of the channel.
基金Supported partially by the National Natural Science Foundation of China (Grant No. 60736006)the 11th Five-Year Plan Weapons and Equipment Pre-research Project (Grant No. 51303060101-3)
文摘Based on the ambiguity function, a novel signal processing method for the polarization measurement radar is developed. One advantage of this method is that the two orthogonal polarized signals do not have to be perpendicular to each other, which is required by traditional methods. The error due to the correlation of the two transmitting signals in the traditional method, can be reduced by this new approach. A concept called ambiguity function matrix (AFM) is introduced based on this method. AFM is a promising tool for the signal selection and design in the polarization scattering matrix measurement. The waveforms of the polarimetric radar are categorized and analyzed based on AFM in this paper. The signal processing flow of this method is explained. And the polarization scattering matrix measurement performance is testified by simulation. Furthermore, this signal processing method can be used in the inter-pulse interval measurement technique as well as in the instantaneous measurement technique.
基金co-supported by the National Natural Science Foundation of China(No.61302141)the Special Fund for Doctoral Subjects in Higher Education Institutions of China(No.20134307120023)
文摘This paper addresses the problem of direction-of-arrival (DOA) and polarization estima- tion with polarization sensitive arrays (PSA), which has been a hot topic in the area of array signal processing during the past two or three decades. The sparse Bayesian learning (SBL) technique is introduced to exploit the sparsity of the incident signals in space to solve this problem and a new method is proposed by reconstructing the signals from the array outputs first and then exploit- ing the reconstructed signals to realize parameter estimation. Only 1-D searching and numerical calculations are contained in the proposed method, which makes the proposed method computa- tionally much efficient. Based on a linear array consisting of identically structured sensors, the proposed method can be used with slight modifications in PSA with different polarization structures. It also performs well in the presence of coherent signals or signals with different degrees of polarization. Simulation results are given to demonstrate the parameter estimation precision of the proposed method.
文摘Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus on applications such as modulation format conversion, differential phase-shift keying (DPSK) demodulation, modulation speed enhancement of directly modulated lasers (DMLs), and monocycle pulse generation. The possibility to implement polarization diversity circuits, which reduce the polarization dependence of standard silicon MRRs, is illustrated on the particular example of DPSK demodulation.
基金This work was in part supported by the Trans-Century Training Programme Foundation for the Talents by the Ministry of Education of China.
文摘Polarization dependent loss (PDL) has been recognized as a critical issue because various inline optical components may have nonnegligible PDL effect that interacts with polarization mode dispersion (PMD). We investigated the impact of PMD-PDL interaction on degree of polarization (DOP), which is the most commonly used feedback signal in PMD compensation. The simulation results of a 40-Gb/s NRZ code optical transmission system show that the maximum PMD increases from approximately 40 ps to more than 45 ps, while minimum DOP declines from approximately 0.6 to approximately 0.2. The interaction of PMD and PDL also induces residual PMD underestimation of 5-8 ps, which causes degradation of PMD compensation performance.
文摘为了有效辅助跳频(FH)网台分选和信号识别、跟踪,该文用正交偶极子对构造极化敏感阵列,基于空间极化时频分析,在欠定条件下实现了多跳频信号波达方向(Direction Of Arrival,DOA)与极化状态的高效联合估计。首先建立跳频信号的极化敏感阵列观察模型,然后根据参考阵元时频分析结果建立各跳信号的空间极化时频分布矩阵,再利用该矩阵中蕴含的信号极化-空域特征信息分别运用线性、二次型空间极化时频以及多项式求根共3种方法实现DOA与极化参数联合估计,最后蒙特卡罗仿真结果验证了该算法的有效性。