期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Polarization insensitivity in square split-ring resonators with asymmetrical arm widths 被引量:1
1
作者 吴倩男 兰峰 +3 位作者 张雅鑫 曾泓鑫 杨梓强 高喜 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第10期72-76,共5页
A polarization-insensitive, square split-ring resonator(SSRR) is simulated and experimented. By investigating the influence of the asymmetrical arm width in typical SSRRs, we find that the variation of the arm width... A polarization-insensitive, square split-ring resonator(SSRR) is simulated and experimented. By investigating the influence of the asymmetrical arm width in typical SSRRs, we find that the variation of the arm width enables a blue shift of the resonance frequency for the 0° polarized wave and a red shift of the resonance frequency for the 90° polarized wave. Thus, the resonance frequency for the 0° polarized wave and the resonance frequency for the 90° polarized wave will be identical by asymmetrically adjusting the arm width of the SSRR. Two modified, split-ring resonators(MSRRs) that are insensitive to the polarization with asymmetrical arm widths are designed, fabricated, and tested. Excellent agreement between the simulations and experiments for the MSRRs demonstrates the polarization insensitivity with asymmetrical arm widths. This work opens new opportunities for the investigation of polarization-insensitive, split-ring resonator metamaterials and will broaden the applications of split-ring resonators in various terahertz devices. 展开更多
关键词 asymmetrical insensitive polarized resonator terahertz split identical polarization excited adjusting
原文传递
Overview of the Major 2012–2013 Northern Hemisphere Stratospheric Sudden Warming:Evolution and Its Association with Surface Weather 被引量:3
2
作者 刘毅 张玉李 《Journal of Meteorological Research》 SCIE 2014年第4期561-575,共15页
In this study, we analyzed the dynamical evolution of the ma jor 2012-2013 Northern Hemisphere (NH) stratospheric sudden warming (SSW) on the basis of ERA-Interim reanalysis data provided by the ECMWF. The intermi... In this study, we analyzed the dynamical evolution of the ma jor 2012-2013 Northern Hemisphere (NH) stratospheric sudden warming (SSW) on the basis of ERA-Interim reanalysis data provided by the ECMWF. The intermittent upward-propagating planetary wave activities beginning in late November 2012 led to a prominent wavenumber-2 disturbance of the polar vortex in early December 2012. However, no major SSW occurred. In mid December 2012, when the polar vortex had not fully recovered, a mixture of persistent wavenumber-1 and -2 planetary waves led to gradual weakening of the polar vortex before the vortex split on 7 January 2013. Evolution of the geopotential height and Eliassen-Palm flux between 500 and 5 hPa indicates that the frequent occurrence of tropospheric ridges over North Pacific and the west coast of North America contributed to the pronounced upward planetary wave activities throughout the troposphere and stratosphere. After mid January 2013, the wavenumber-2 planetary waves became enhanced again within the troposphere, with a deepened trough over East Asia and North America and two ridges between the troughs. The enhanced tropospheric planetary waves may contribute to the long-lasting splitting of the polar vortex in the lower stratosphere. The 2012-2013 SSW shows combined features of both vortex displacement and vortex splitting. Therefore, the anomalies of tropospheric circulation and surface temperature after the 2012-2013 SSW resemble neither vortex-displaced nor vortex-split SSWs, but the combination of all SSWs. The remarkable tropospheric ridge extending from the Bering Sea into the Arctic Ocean together with the resulting deepened East Asian trough may play important roles in bringing cold air from the high Arctic to central North America and northern Eurasia at the surface. 展开更多
关键词 stratospheric sudden warming polar vortex splitting planetary wave Eliassen-Palm flux cold wave
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部