The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that th...The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.展开更多
Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is ...Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.展开更多
The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performa...The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performance of the power system. This paper proposes a robust method to design a controller for multi-area LFC schemes considering communication delays. In existing literature, the controller values of LFC are designed using time domain approach which is less accurate than the proposed method. In proposed method, the controller values are determined by moving the rightmosteigenvalues of the system to the left half plane in a quasi-continuous way for a preset upper bound of time delay. Then the robustness of the proposed controller is assessed by estimating the maximumtolerable value of time delay for maintaining system stability. Simulation studies are carried out for multi-area LFC scheme equipped with the proposed controller using Matlab/simulink. From the results, it has been concluded that the proposed controller guarantees the tolerance for all time delays smaller than the preset upper bound and provides a bigger delay margin than the existing controllers.展开更多
文摘The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.
文摘Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.
文摘The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performance of the power system. This paper proposes a robust method to design a controller for multi-area LFC schemes considering communication delays. In existing literature, the controller values of LFC are designed using time domain approach which is less accurate than the proposed method. In proposed method, the controller values are determined by moving the rightmosteigenvalues of the system to the left half plane in a quasi-continuous way for a preset upper bound of time delay. Then the robustness of the proposed controller is assessed by estimating the maximumtolerable value of time delay for maintaining system stability. Simulation studies are carried out for multi-area LFC scheme equipped with the proposed controller using Matlab/simulink. From the results, it has been concluded that the proposed controller guarantees the tolerance for all time delays smaller than the preset upper bound and provides a bigger delay margin than the existing controllers.