The central environmental protection inspection (CEPI) system in China is a significant institutional innova‐tion in national environmental governance. The CEPI applies a joint supervision strategy to address salient...The central environmental protection inspection (CEPI) system in China is a significant institutional innova‐tion in national environmental governance. The CEPI applies a joint supervision strategy to address salient en‐vironmental issues and strictly enforce the environmental responsibilities of local governments. This study col‐lects and organizes CEPI inspection reports covering three stages that encompass the first round, the “look back”, and the second round, applying text analysis to obtain sample data and conduct statistical quantifica‐tion of word frequency in inspection reports and identify notable changes. The study explores the allocation of CEPI attention between policy objectives and the intensity of policy instruments. We determine that in con‐junction with public opinion feedback, the CEPI conducts targeted inspections and focuses more on pollutant governance, which has high severity and can be addressed quickly. The CEPI fills the gap of normalized gover‐nance with a campaign-style governance approach. Regarding the intensity of policy measures, the CEPI pri‐marily uses economic incentive policy instruments, supplemented by command-and-control and public guid‐ance approaches, advancing the sustainability of regulatory effectiveness through economic, social, and politi‐cal activities. This study extends knowledge in the field of CEPI policy priorities and implementation, expand‐ing the literature related to outcomes of environmental policy in developing countries.展开更多
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in...Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.展开更多
Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of ...Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.展开更多
The cloud allows clients to store and share data.Depending on the user’s needs,it is imperative to design an effective access control plan to share the information only with approved users.The user loses control of t...The cloud allows clients to store and share data.Depending on the user’s needs,it is imperative to design an effective access control plan to share the information only with approved users.The user loses control of their data when the data is outsourced to the cloud.Therefore,access control mechanisms will become a significant challenging problem.The Ciphertext-Policy Attribute-Based Encryption(CP-ABE)is an essential solution in which the user can control data access.CP-ABE encrypts the data under a limited access policy after the user sets some access policies.The user can decrypt the data if they satisfy the limited access policy.Although CP-ABE is an effective access control program,the privacy of the policy might be compromised by the attackers.Namely,the attackers can gather important information from plain text policy.To address this issue,the SHA-512 algorithm is presented to create a hash code for the user’s attributes in this paper.Depending on the created hash codes,an access policy will be formed.It leads to protecting the access policy against attacks.The effectiveness of the proposed scheme is assessed based on decryption time,private key generation time,ciphertext generation time,and data verification time.展开更多
BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons comb...BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons combined with dynamic virtual environments on preoperative anxiety and anesthesia induction compliance in preschool-aged children undergoing surgery.METHODS One hundred and sixteen preschool-aged children were selected and assigned to the drug(n=37),intervention(n=40),and control(n=39)groups.All the children received routine preoperative checkups and nursing before being transferred to the preoperative preparation room on the day of the operation.The drug group received 0.5 mg/kg midazolam and the intervention group treatment consisting of static cartoons combined with dynamic virtual environments.The control group received no intervention.The modified Yale Preoperative Anxiety Scale was used to evaluate the children’s anxiety level on the day before surgery(T0),before leaving the preoperative preparation room(T1),when entering the operating room(T2),and at anesthesia induction(T3).Compliance during anesthesia induction(T3)was evaluated using the Induction Compliance Checklist(ICC).Changes in mean arterial pressure(MAP),heart rate(HR),and respiratory rate(RR)were also recorded at each time point.RESULTS The anxiety scores of the three groups increased variously at T1 and T2.At T3,both the drug and intervention groups had similar anxiety scores,both of which were lower than those in the control group.At T1 and T2,MAP,HR,and RR of the three groups increased.The drug and control groups had significantly higher MAP and RR than the intervention group at T2.At T3,the MAP,HR,and RR of the drug group decreased and were significantly lower than those in the control group but were comparable to those in the intervention group.Both the drug and intervention groups had similar ICC scores and duration of anesthesia induction(T3),both of which were higher than those of the control group.CONCLUSION Combining static cartoons with dynamic virtual environments as effective as medication,specifically midazolam,in reducing preoperative anxiety and fear in preschool-aged children.This approach also improve their compliance during anesthesia induction and helped maintain their stable vital signs.展开更多
High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the ...High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the surface and corrosion resistance properties of Inconel 625 HVOF coating.In this paper,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS)tests were carried out to evaluate the corrosion resistance of Inconel 625 coating under simulated marine environment.The experiment-al results showed that Inconel 625 coating revealed low porosity and desired coating thickness.Shift in the corrosion potential(E_(corr))to-wards the noble direction combined with much low corrosion current density(i_(corr))indicating a significant improvement of HVOF Inconel 625 coating compared with the substrate.展开更多
Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl...Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.展开更多
Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is...Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.展开更多
The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the coll...The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the collection of wastewater samples. Their analysis revealed specific pollutant loads, including loads of BOD5 3.6966 kgO<sub>2</sub>/day and COD of 12.8775 kgO<sub>2</sub>/day, which were central to the design phase. Following a rigorous assessment of the existing sanitation infrastructure, constructed wetland (CWs) emerged as the most appropriate ecological solution. This system, valued for its ability to effectively remove contaminants, was tailored to the specific needs of the site. Consequently, the final design of the filter extends over 217.16 m<sup>2</sup>, divided into two cells of 108.58 m<sup>2</sup> each, with dimensions of 12.77 m in length and 8.5 m in width. The depth of the filtering medium is approximately 0.60 m, meeting the standards while ensuring maximized purification. Typha, an indigenous and prolific plant known for its purification abilities, was selected as the filtering agent. Concurrently, non-crushed gravel was chosen for its proven filtration capacity. This study is the result of a combination of scientific rigor and design expertise. It provides a holistic view of sanitation for Ndiebene Gandiol. The technical specifications and dimensions of the constructed wetland filter embody an approach that marries indepth analysis and practical application, all aimed at delivering an effective and long-lasting solution to the local sanitation challenges. By integrating precise scientific data with sanitation design expertise, this study delivers a holistic solution for Ndiebene Gandiol. The detailed dimensions and specifications of the constructed wetland filter reflect a methodology that combines meticulous analysis with practical adaptation, aiming to provide an effective and sustainable response to the challenges of rural and school sanitation in the northern region of Senegal.展开更多
he triple planetary crisis—climate change,biodiversity loss,and pollution—threatens planetary health.In response to these challenges,the Intergovernmental Panel on Climate Change(IPCC)was established in 1988,followe...he triple planetary crisis—climate change,biodiversity loss,and pollution—threatens planetary health.In response to these challenges,the Intergovernmental Panel on Climate Change(IPCC)was established in 1988,followed by the formation of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services(IPBES)in 2012.Ongoing global initiatives through IPCC and IPBES have significantly advanced scientific understanding,raised public awareness,and informed policy-making in relation to climate change and biodiversity loss.However,pollution remains a pressing concern in all three crises.展开更多
Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for o...Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.展开更多
The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure(HPHT) growth environment was systematically investigated in this work by developing three growth systems,namely, "F...The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure(HPHT) growth environment was systematically investigated in this work by developing three growth systems,namely, "FeNi+Ti", "FeNi+G_(3)N_(6)H_(6)",and "FeNi+Ti+C_(3)N_(6)H_(6)".Optical microscopy,infrared spectroscopy,and photoluminescence(PL)spectroscopy measurements were conducted to analyze the spectroscopic characteristics of diamonds grown in these three systems.From our analysis,it was demonstrated that the presence of hydrogen in the sp^(3) hybrid C-H does not directly affect the color of the diamond and facilitates the increase of the nitrogen-vacancy(NV) center concentration in a highnitrogen-content diamond.In addition,titanium plays an important role in nitrogen removal,while its impact on hydrogen doping within the diamond lattice is insignificant.Most importantly,by regulating the ratio of nitrogen impurities that coexist in the nitrogen and hydrogen HPHT environment,the production of hydrogenous Ⅱa-type diamond,hydrogenous Ib-type diamond,and hydrogenous high-nitrogen-type diamonds was achieved with a nitrogen content of less than 1 ppm to 1600 ppm.展开更多
The River Chief System (RCS) has evolved from local innovative practices to a national water governance strategy to address the current challenges in China’s water environmental management. In contrast to existing re...The River Chief System (RCS) has evolved from local innovative practices to a national water governance strategy to address the current challenges in China’s water environmental management. In contrast to existing research that focuses on the strengths, weaknesses, and improvements of RCS, this study uses literature study to reveal the dynamic evolution of RCS through three phases, with RCS spreading from developed coastal areas to central and western inland regions. RCS’s diffusion path involves vertical diffusion between central and local levels and horizontal diffusion among local governments. Moreover, RCS has also achieved conceptual spillover, gradually expanding into other governance domains, such as the Lake Chief System, the Field Chief System, the Forestry Chief System, and the integration of multiple chief roles. However, it is essential to scrutinize the phenomenon of applying similar governance mechanisms to different areas, as it may result in challenges such as overburdening local governments, insufficient public participation, oversimplification of differences in natural resource endowments, and limited applicability. This study also provides suggestions on how to address these challenges. The study contributes theoretical insights and policy implications, providing a foundation for practical policy innovation.展开更多
H9N2 virus has been widely distributed in wild birds and poultry around the world since its first emergence in the United States of America in 1966(Gu et al.2017;Carnaccini and Perez 2020).The virus appeared in chicke...H9N2 virus has been widely distributed in wild birds and poultry around the world since its first emergence in the United States of America in 1966(Gu et al.2017;Carnaccini and Perez 2020).The virus appeared in chickens in China in the early 1990s,and over the last two decades has gradually become the dominant epidemic subtype(Sun and Liu 2015;Bi et al.2020).Although H9N2 virus infection alone cannot cause severe disease or death in poultry,H9N2 virus-infected birds experience a degree of egg production drop and can be easily infected by other pathogens,thus causing economic losses for poultry industry.展开更多
The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learni...The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learning(ML)-based prediction method to study the evolution of the mechanical properties of Al-Li alloys in the marine environment.We obtained the mechanical properties of Al-Li alloy samples under uniaxial tensile deformation at different exposure times through Marine exposure experiments.We obtained the strain evolution by digital image correlation(DIC).The strain field images are voxelized using 2D-Convolutional Neural Networks(CNN)autoencoders as input data for Long Short-Term Memory(LSTM)neural networks.Then,the output data of LSTM neural networks combined with corrosion features were input into the Back Propagation(BP)neural network to predict the mechanical properties of Al-Li alloys.The main conclusions are as follows:1.The variation law of mechanical properties of2297-T8 in the Marine atmosphere is revealed.With the increase in outdoor exposure test time,the tensile elastic model of 2297-T8 changes slowly,within 10%,and the tensile yield stress changes significantly,with a maximum attenuation of 23.6%.2.The prediction model can predict the strain evolution and mechanical response simultaneously with an error of less than 5%.3.This study shows that a CNN/LSTM system based on machine learning can be built to capture the corrosion characteristics of Marine exposure experiments.The results show that the relationship between corrosion characteristics and mechanical response can be predicted without considering the microstructure evolution of metal materials.展开更多
Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechan...Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of ...Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin.展开更多
Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affect...Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail.展开更多
基金supported by National Natural Science Foundation of China[Grant No.72304124]Spring Sunshine Collaborative Re‐search Project of the Ministry of Education in China[Grant No.202201660]+2 种基金Youth Project of Gansu Natural Science Foundation[Grant No.22JR5RA542]General Project of Gansu Philosophy and Social Science Foundation[Grant No.2022YB014]Fundamental Re‐search Funds for the Central Universities[Grant No.2023lzdxjb‐kyzx008].
文摘The central environmental protection inspection (CEPI) system in China is a significant institutional innova‐tion in national environmental governance. The CEPI applies a joint supervision strategy to address salient en‐vironmental issues and strictly enforce the environmental responsibilities of local governments. This study col‐lects and organizes CEPI inspection reports covering three stages that encompass the first round, the “look back”, and the second round, applying text analysis to obtain sample data and conduct statistical quantifica‐tion of word frequency in inspection reports and identify notable changes. The study explores the allocation of CEPI attention between policy objectives and the intensity of policy instruments. We determine that in con‐junction with public opinion feedback, the CEPI conducts targeted inspections and focuses more on pollutant governance, which has high severity and can be addressed quickly. The CEPI fills the gap of normalized gover‐nance with a campaign-style governance approach. Regarding the intensity of policy measures, the CEPI pri‐marily uses economic incentive policy instruments, supplemented by command-and-control and public guid‐ance approaches, advancing the sustainability of regulatory effectiveness through economic, social, and politi‐cal activities. This study extends knowledge in the field of CEPI policy priorities and implementation, expand‐ing the literature related to outcomes of environmental policy in developing countries.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31870613)Guizhou Province High-level Innovative Talents Training Plan Project(2016)5661.
文摘Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.
文摘Purpose: The genus Pseudomonas is a ubiquitous microorganism frequently detected from immunocompromised patients. The inherent resistance to numerous antimicrobial agents contributes to the opportunistic character of this pathogen exhaustive monitoring of this pathogen is considered of critical importance to public health organizations. The reliable identification method able to distinguish genetic close Pseudomonas species is needed, because these organisms are difficult to differentiate by phenotypic or biochemical methods. The purpose of the present study was to design species-specific primers in order to identify and detect four Pseudomonas species which are frequently detected from the human oral cavities, and to investigate the distribution of these organisms in the living environment using a multiplex PCR. Methods: Polymerase chain reaction (PCR) primers were designed based on partial sequences of the rpoD gene of four Pseudomonas species. Swab samples were collected from fifty washstands, and the distribution of Pseudomonas species was investigated using a conventional PCR at genus level and a multiplex PCR at species level. Results: Multiplex PCR method developed in this study was able to distinguish four Pseudomonas species clearly. The genus Pseudomonas was detected from all samples (100%), whereas P. putida, P, aeruginosa, P. stutzeri and P. fluorescens were detected at 44%, 8%, 4% and 2% in fifty swab samples, respectively. Conclusion: Our developed one-step multiplex PCR method is accurate, specific, cost-effective, time-saving, and works without requiring DNA extraction. It was indicated that washstands were the uninhabitable environment for P. putida, P, aeruginosa, P. stutzeri and P. fluorescens.
文摘The cloud allows clients to store and share data.Depending on the user’s needs,it is imperative to design an effective access control plan to share the information only with approved users.The user loses control of their data when the data is outsourced to the cloud.Therefore,access control mechanisms will become a significant challenging problem.The Ciphertext-Policy Attribute-Based Encryption(CP-ABE)is an essential solution in which the user can control data access.CP-ABE encrypts the data under a limited access policy after the user sets some access policies.The user can decrypt the data if they satisfy the limited access policy.Although CP-ABE is an effective access control program,the privacy of the policy might be compromised by the attackers.Namely,the attackers can gather important information from plain text policy.To address this issue,the SHA-512 algorithm is presented to create a hash code for the user’s attributes in this paper.Depending on the created hash codes,an access policy will be formed.It leads to protecting the access policy against attacks.The effectiveness of the proposed scheme is assessed based on decryption time,private key generation time,ciphertext generation time,and data verification time.
基金Supported by Hangzhou Medical and Health Technology Project,No.OO20191141。
文摘BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons combined with dynamic virtual environments on preoperative anxiety and anesthesia induction compliance in preschool-aged children undergoing surgery.METHODS One hundred and sixteen preschool-aged children were selected and assigned to the drug(n=37),intervention(n=40),and control(n=39)groups.All the children received routine preoperative checkups and nursing before being transferred to the preoperative preparation room on the day of the operation.The drug group received 0.5 mg/kg midazolam and the intervention group treatment consisting of static cartoons combined with dynamic virtual environments.The control group received no intervention.The modified Yale Preoperative Anxiety Scale was used to evaluate the children’s anxiety level on the day before surgery(T0),before leaving the preoperative preparation room(T1),when entering the operating room(T2),and at anesthesia induction(T3).Compliance during anesthesia induction(T3)was evaluated using the Induction Compliance Checklist(ICC).Changes in mean arterial pressure(MAP),heart rate(HR),and respiratory rate(RR)were also recorded at each time point.RESULTS The anxiety scores of the three groups increased variously at T1 and T2.At T3,both the drug and intervention groups had similar anxiety scores,both of which were lower than those in the control group.At T1 and T2,MAP,HR,and RR of the three groups increased.The drug and control groups had significantly higher MAP and RR than the intervention group at T2.At T3,the MAP,HR,and RR of the drug group decreased and were significantly lower than those in the control group but were comparable to those in the intervention group.Both the drug and intervention groups had similar ICC scores and duration of anesthesia induction(T3),both of which were higher than those of the control group.CONCLUSION Combining static cartoons with dynamic virtual environments as effective as medication,specifically midazolam,in reducing preoperative anxiety and fear in preschool-aged children.This approach also improve their compliance during anesthesia induction and helped maintain their stable vital signs.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LTGC23E010001)the Youth Science and Technology Project of Zhejiang Provincial Administration for Market Regulation(No.QN2023427)Science and Techno-logy Project of State Administration for Market Regulation(No.2022MK054).
文摘High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the surface and corrosion resistance properties of Inconel 625 HVOF coating.In this paper,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS)tests were carried out to evaluate the corrosion resistance of Inconel 625 coating under simulated marine environment.The experiment-al results showed that Inconel 625 coating revealed low porosity and desired coating thickness.Shift in the corrosion potential(E_(corr))to-wards the noble direction combined with much low corrosion current density(i_(corr))indicating a significant improvement of HVOF Inconel 625 coating compared with the substrate.
文摘Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.
基金the National Natural Science Foundation of China(61922063,62273255,62150026)in part by the Shanghai International Science and Technology Cooperation Project(21550760900,22510712000)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities。
文摘Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.
文摘The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the collection of wastewater samples. Their analysis revealed specific pollutant loads, including loads of BOD5 3.6966 kgO<sub>2</sub>/day and COD of 12.8775 kgO<sub>2</sub>/day, which were central to the design phase. Following a rigorous assessment of the existing sanitation infrastructure, constructed wetland (CWs) emerged as the most appropriate ecological solution. This system, valued for its ability to effectively remove contaminants, was tailored to the specific needs of the site. Consequently, the final design of the filter extends over 217.16 m<sup>2</sup>, divided into two cells of 108.58 m<sup>2</sup> each, with dimensions of 12.77 m in length and 8.5 m in width. The depth of the filtering medium is approximately 0.60 m, meeting the standards while ensuring maximized purification. Typha, an indigenous and prolific plant known for its purification abilities, was selected as the filtering agent. Concurrently, non-crushed gravel was chosen for its proven filtration capacity. This study is the result of a combination of scientific rigor and design expertise. It provides a holistic view of sanitation for Ndiebene Gandiol. The technical specifications and dimensions of the constructed wetland filter embody an approach that marries indepth analysis and practical application, all aimed at delivering an effective and long-lasting solution to the local sanitation challenges. By integrating precise scientific data with sanitation design expertise, this study delivers a holistic solution for Ndiebene Gandiol. The detailed dimensions and specifications of the constructed wetland filter reflect a methodology that combines meticulous analysis with practical adaptation, aiming to provide an effective and sustainable response to the challenges of rural and school sanitation in the northern region of Senegal.
文摘he triple planetary crisis—climate change,biodiversity loss,and pollution—threatens planetary health.In response to these challenges,the Intergovernmental Panel on Climate Change(IPCC)was established in 1988,followed by the formation of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services(IPBES)in 2012.Ongoing global initiatives through IPCC and IPBES have significantly advanced scientific understanding,raised public awareness,and informed policy-making in relation to climate change and biodiversity loss.However,pollution remains a pressing concern in all three crises.
基金jointly funded by the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLC20210104)China Geological Survey(DD20221661)China National Science and Technology Major Project“Test and Application of Shale Gas Exploration and Evaluation Technology(2016ZX05034004)”。
文摘Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12274373 and 12004341)the Open Project of Inner Mongolia Key Laboratory of High-pressure Phase Functional Materials,Chifeng University (Grant No. cfxygy202301)+1 种基金the Science and Technology Project of Xilinguole Province (Grant No. 202209)the Natural Science Foundation of Henan Province (Grant No. 242300421155)。
文摘The regulating nitrogen content of diamond in a hydrogen-rich high-temperature and high-pressure(HPHT) growth environment was systematically investigated in this work by developing three growth systems,namely, "FeNi+Ti", "FeNi+G_(3)N_(6)H_(6)",and "FeNi+Ti+C_(3)N_(6)H_(6)".Optical microscopy,infrared spectroscopy,and photoluminescence(PL)spectroscopy measurements were conducted to analyze the spectroscopic characteristics of diamonds grown in these three systems.From our analysis,it was demonstrated that the presence of hydrogen in the sp^(3) hybrid C-H does not directly affect the color of the diamond and facilitates the increase of the nitrogen-vacancy(NV) center concentration in a highnitrogen-content diamond.In addition,titanium plays an important role in nitrogen removal,while its impact on hydrogen doping within the diamond lattice is insignificant.Most importantly,by regulating the ratio of nitrogen impurities that coexist in the nitrogen and hydrogen HPHT environment,the production of hydrogenous Ⅱa-type diamond,hydrogenous Ib-type diamond,and hydrogenous high-nitrogen-type diamonds was achieved with a nitrogen content of less than 1 ppm to 1600 ppm.
文摘The River Chief System (RCS) has evolved from local innovative practices to a national water governance strategy to address the current challenges in China’s water environmental management. In contrast to existing research that focuses on the strengths, weaknesses, and improvements of RCS, this study uses literature study to reveal the dynamic evolution of RCS through three phases, with RCS spreading from developed coastal areas to central and western inland regions. RCS’s diffusion path involves vertical diffusion between central and local levels and horizontal diffusion among local governments. Moreover, RCS has also achieved conceptual spillover, gradually expanding into other governance domains, such as the Lake Chief System, the Field Chief System, the Forestry Chief System, and the integration of multiple chief roles. However, it is essential to scrutinize the phenomenon of applying similar governance mechanisms to different areas, as it may result in challenges such as overburdening local governments, insufficient public participation, oversimplification of differences in natural resource endowments, and limited applicability. This study also provides suggestions on how to address these challenges. The study contributes theoretical insights and policy implications, providing a foundation for practical policy innovation.
基金supported by the National Key Research and Development Program of China(2021YFD1800200 and 2021YFC2301700)the National Natural Science Foundation of China(32192451)+1 种基金the Innovation Program of the Chinese Academy of Agricultural Sciences(CAASCSLPDCP-202301)the earmarked fund for CARS41(CARS-41).
文摘H9N2 virus has been widely distributed in wild birds and poultry around the world since its first emergence in the United States of America in 1966(Gu et al.2017;Carnaccini and Perez 2020).The virus appeared in chickens in China in the early 1990s,and over the last two decades has gradually become the dominant epidemic subtype(Sun and Liu 2015;Bi et al.2020).Although H9N2 virus infection alone cannot cause severe disease or death in poultry,H9N2 virus-infected birds experience a degree of egg production drop and can be easily infected by other pathogens,thus causing economic losses for poultry industry.
基金supported by the Southwest Institute of Technology and Engineering cooperation fund(Grant No.HDHDW5902020104)。
文摘The ocean is one of the essential fields of national defense in the future,and more and more attention is paid to the lightweight research of Marine equipment and materials.This study it is to develop a Machine learning(ML)-based prediction method to study the evolution of the mechanical properties of Al-Li alloys in the marine environment.We obtained the mechanical properties of Al-Li alloy samples under uniaxial tensile deformation at different exposure times through Marine exposure experiments.We obtained the strain evolution by digital image correlation(DIC).The strain field images are voxelized using 2D-Convolutional Neural Networks(CNN)autoencoders as input data for Long Short-Term Memory(LSTM)neural networks.Then,the output data of LSTM neural networks combined with corrosion features were input into the Back Propagation(BP)neural network to predict the mechanical properties of Al-Li alloys.The main conclusions are as follows:1.The variation law of mechanical properties of2297-T8 in the Marine atmosphere is revealed.With the increase in outdoor exposure test time,the tensile elastic model of 2297-T8 changes slowly,within 10%,and the tensile yield stress changes significantly,with a maximum attenuation of 23.6%.2.The prediction model can predict the strain evolution and mechanical response simultaneously with an error of less than 5%.3.This study shows that a CNN/LSTM system based on machine learning can be built to capture the corrosion characteristics of Marine exposure experiments.The results show that the relationship between corrosion characteristics and mechanical response can be predicted without considering the microstructure evolution of metal materials.
基金the National Natural Science Foundation of China(32071955)the Natural Science Foundation of Shaanxi Province,China(2018JQ3061).
文摘Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
基金financially supported by the National Natural Science Foundation of China(Grant No.42272209)the Natural Science Basic Research Program of Shaanxi(Grant No.2021JLM-12)the CNPC Major Science and Technology Project(Grant No.2021DJ3805)。
文摘Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin.
基金National Natural Science Foundation of China High Speed Rail Joint Fund(U2268217)。
文摘Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail.