The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seed...The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23℃ after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.展开更多
Using DGD embedment_free electron microscopy, ultrastructural observation on the intra_ and intercellular microtrabecular network (MN) of the pollen mother cells (PMC) of the whole meiotic prophase Ⅰ in onion ( Alli...Using DGD embedment_free electron microscopy, ultrastructural observation on the intra_ and intercellular microtrabecular network (MN) of the pollen mother cells (PMC) of the whole meiotic prophase Ⅰ in onion ( Allium cepa L.) was performed. Complex nuclear MN was observed in the nucleus of PMCs, spreading throughout the nuclear region. The nucleolus and chromosomes were connected with the MN filament network. The uniformity of nuclear MN changed with the development of the PMCs. A lamina_like structure surrounded the nucleus and joined the MN in nucleus and in cytoplasm, but it disassembled at the end of prophase Ⅰ. There was also a complex cytoplasmic MN in PMCs, without obvious variation during the prophase Ⅰ. Furthermore, MN in cytoplasmic connections (plasmodesmata and cytoplasmic channels) was noticed to link the frameworks in two neighboring PMCs into one entity. Cytomixis was observed at synizesis of prophase Ⅰ in this experiment, and MN in cytoplasm and in nucleus was noticed to distribute in these granules which migrated from one PMC into its neighboring cell. At this time the nucleus moved aside from center of the PMC, but the rest of the cell was still fulfilled with MN filaments. The relationships of nuclear MN with nucleolus and chromosomes, lamina with nucleus, as well as intra_ and intercellular MN with cytomixis are discussed in this paper.展开更多
[Objective] Pollen mother cell miosis and male gametophyte development of pumpkin were observed in this study, to provide some cytological basis for pumpkin anther or microspore culture. [Method] Ehrlich's hematoxyli...[Objective] Pollen mother cell miosis and male gametophyte development of pumpkin were observed in this study, to provide some cytological basis for pumpkin anther or microspore culture. [Method] Ehrlich's hematoxylin staining-methyl salicylate clearing technique was used for observation and research of the variation of cell structure and chromosomal behavior during pollen mother cell miosis and male gametophyte development of ‘Tianhong' pumpkin. [Result] The meiosis in pollen moth- er cells of pumpkin was simultaneous cytokinesis. In the process of nuclear division, nuclear membrane and nucleolus of pumpkin pollen mother cells gradually disappeared in the metaphase I and reappeared in telophase I , phragmoplast formed between the two generated crescent-shaped nuclei without cell wall, the phragmoplast gradually disappeared in the metaphase II and reappeared in telophase II. Phragmoplast spread outward from the center of spindle during the second division was connected with that formed on the central interface of two nuclei during the first division, cell wall of microspores generated from periphery to center. Most of the tetrads contained four sub-cells while a few contained extra small cells. During the period of uniuclete microspore at periphery, the single nucleolus split into 2-3 or more small nucleoli, mature pollen grain was two-celled. Mononucleate pollen cells were mostly appeared in the flower buds with length of 1.0-2.0 cm, which could be used as an important indicator to collect materials for anther or microspore culture. [Conclusion] This study laid the foundation for research of the cytogenetics of pumpkin.展开更多
In order to isolate meiotic chromosomes of Populus species meiotic chromosome preparation techniques of pollen mother cells for laser micro-dissection were studied. Pollen mother cells at diakinesis ofPopulus canadens...In order to isolate meiotic chromosomes of Populus species meiotic chromosome preparation techniques of pollen mother cells for laser micro-dissection were studied. Pollen mother cells at diakinesis ofPopulus canadensis Moench were used as samples. Two methods were used to prepare meiotic chromosomes: in the first, cell suspensions were dropped on polyethylene-naphthalate or polyester membrane slides which had just been incubated at -20~C; in the second method, cell suspensions were also dropped on polyethylene-naphthalate or polyester membrane slides, but spread with the aid of high temperatures. The cells did not completely spread by the first method and chromosomes at diakinesis could not be individually distinguished. In contrast, well-spread diakinesis chromosomes were obtained by the second method, where chromosomes, connected with their nucleolus, were successfully isolated with the laser micro-dissection system. As well, we discuss the prospect of applications of laser micro-dissection in cytogeneties and molecular genetics in Populus species.展开更多
Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce th...Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.展开更多
研究了静态强磁场(Static magnetic fields,SMFs)对小麦花粉母细胞的影响,以评价环境中这种非电离辐射可能的遗传毒性。将小麦种子暴露于不同磁场强度(1、3、5、7T)/5h及进行不同时间(1、3、5h)/7T的处理,取其幼穗进行常规制片。以微核...研究了静态强磁场(Static magnetic fields,SMFs)对小麦花粉母细胞的影响,以评价环境中这种非电离辐射可能的遗传毒性。将小麦种子暴露于不同磁场强度(1、3、5、7T)/5h及进行不同时间(1、3、5h)/7T的处理,取其幼穗进行常规制片。以微核、染色体桥、落后染色体、断片、非四极分裂等的频率作为DNA损伤的指标来评价SMFs的遗传毒性作用。结果表明,5T以下剂量,暴露组与对照组之间在畸变频率上无统计学意义上的差别,5T场强下染色体桥、7T场强下落后染色体、三极分离、微核的频率则有显著的提高。剂量-效应呈现出剂量依赖的非线性关系,表明5T以上静态强磁场可能对生物体具有某种遗传损伤效应。展开更多
基金National Natural Science Foundation of China(No.50207009)
文摘The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23℃ after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.
文摘Using DGD embedment_free electron microscopy, ultrastructural observation on the intra_ and intercellular microtrabecular network (MN) of the pollen mother cells (PMC) of the whole meiotic prophase Ⅰ in onion ( Allium cepa L.) was performed. Complex nuclear MN was observed in the nucleus of PMCs, spreading throughout the nuclear region. The nucleolus and chromosomes were connected with the MN filament network. The uniformity of nuclear MN changed with the development of the PMCs. A lamina_like structure surrounded the nucleus and joined the MN in nucleus and in cytoplasm, but it disassembled at the end of prophase Ⅰ. There was also a complex cytoplasmic MN in PMCs, without obvious variation during the prophase Ⅰ. Furthermore, MN in cytoplasmic connections (plasmodesmata and cytoplasmic channels) was noticed to link the frameworks in two neighboring PMCs into one entity. Cytomixis was observed at synizesis of prophase Ⅰ in this experiment, and MN in cytoplasm and in nucleus was noticed to distribute in these granules which migrated from one PMC into its neighboring cell. At this time the nucleus moved aside from center of the PMC, but the rest of the cell was still fulfilled with MN filaments. The relationships of nuclear MN with nucleolus and chromosomes, lamina with nucleus, as well as intra_ and intercellular MN with cytomixis are discussed in this paper.
基金Supported by Project of Jiangsu Provincial Department of Education (JHZD06-7)Qing Lan Project of Colleges and Universities in Jiangsu Province (2008 No.30)~~
文摘[Objective] Pollen mother cell miosis and male gametophyte development of pumpkin were observed in this study, to provide some cytological basis for pumpkin anther or microspore culture. [Method] Ehrlich's hematoxylin staining-methyl salicylate clearing technique was used for observation and research of the variation of cell structure and chromosomal behavior during pollen mother cell miosis and male gametophyte development of ‘Tianhong' pumpkin. [Result] The meiosis in pollen moth- er cells of pumpkin was simultaneous cytokinesis. In the process of nuclear division, nuclear membrane and nucleolus of pumpkin pollen mother cells gradually disappeared in the metaphase I and reappeared in telophase I , phragmoplast formed between the two generated crescent-shaped nuclei without cell wall, the phragmoplast gradually disappeared in the metaphase II and reappeared in telophase II. Phragmoplast spread outward from the center of spindle during the second division was connected with that formed on the central interface of two nuclei during the first division, cell wall of microspores generated from periphery to center. Most of the tetrads contained four sub-cells while a few contained extra small cells. During the period of uniuclete microspore at periphery, the single nucleolus split into 2-3 or more small nucleoli, mature pollen grain was two-celled. Mononucleate pollen cells were mostly appeared in the flower buds with length of 1.0-2.0 cm, which could be used as an important indicator to collect materials for anther or microspore culture. [Conclusion] This study laid the foundation for research of the cytogenetics of pumpkin.
基金supported by the State Forestry Administration of China (2002-66)
文摘In order to isolate meiotic chromosomes of Populus species meiotic chromosome preparation techniques of pollen mother cells for laser micro-dissection were studied. Pollen mother cells at diakinesis ofPopulus canadensis Moench were used as samples. Two methods were used to prepare meiotic chromosomes: in the first, cell suspensions were dropped on polyethylene-naphthalate or polyester membrane slides which had just been incubated at -20~C; in the second method, cell suspensions were also dropped on polyethylene-naphthalate or polyester membrane slides, but spread with the aid of high temperatures. The cells did not completely spread by the first method and chromosomes at diakinesis could not be individually distinguished. In contrast, well-spread diakinesis chromosomes were obtained by the second method, where chromosomes, connected with their nucleolus, were successfully isolated with the laser micro-dissection system. As well, we discuss the prospect of applications of laser micro-dissection in cytogeneties and molecular genetics in Populus species.
基金supported by the National Natural Science Foundation of China(Grant No.32101489)Forestry Science and Technology Innovation Program of Hunan Province(Grant No.XLK202101-2)Science and Technology Innovation Platform and Talent Program of Hunan Province(Grant Nos.2023RC3164,2021NK1007)。
文摘Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.
文摘研究了静态强磁场(Static magnetic fields,SMFs)对小麦花粉母细胞的影响,以评价环境中这种非电离辐射可能的遗传毒性。将小麦种子暴露于不同磁场强度(1、3、5、7T)/5h及进行不同时间(1、3、5h)/7T的处理,取其幼穗进行常规制片。以微核、染色体桥、落后染色体、断片、非四极分裂等的频率作为DNA损伤的指标来评价SMFs的遗传毒性作用。结果表明,5T以下剂量,暴露组与对照组之间在畸变频率上无统计学意义上的差别,5T场强下染色体桥、7T场强下落后染色体、三极分离、微核的频率则有显著的提高。剂量-效应呈现出剂量依赖的非线性关系,表明5T以上静态强磁场可能对生物体具有某种遗传损伤效应。