1 Introduction The northeastern Qinghai-Tibetan Plateau(NE QTP),located at a triple junction of influences of the Asian summer monsoon,westerly jet stream and Siberian high,is of considerable significance with regard ...1 Introduction The northeastern Qinghai-Tibetan Plateau(NE QTP),located at a triple junction of influences of the Asian summer monsoon,westerly jet stream and Siberian high,is of considerable significance with regard to regional responses to global climate change.Qarhan Salt Lake is the largest playa located in the central eastern展开更多
Comprehensive studies on the basis of pollen records from lake cores at 30 sites in the Qinghai-Xizang Plateau have been used to reconstruct temporal-spatial distributions of Holocene vegetations. Before the, Holocene...Comprehensive studies on the basis of pollen records from lake cores at 30 sites in the Qinghai-Xizang Plateau have been used to reconstruct temporal-spatial distributions of Holocene vegetations. Before the, Holocene (prior to 12.0 ka BP) desert steppe vegetation was developed from the, east to the west in the most parts of the Plateau, with a few exceptions in the extreme southeastern appeared. During the early Holocene ( 12.0 - 9.0 ka BP) deciduous broad-leaved forest/conifer and broad-leaved deciduous mixed forest were distributed in the east of Plateau (104degrees - 98degrees E). Meadows or shrub, meadow appeared in the middle of tire Plateau (98degrees - 92degrees E). Farther west to about 80degrees E, a steppe landscape was present. During the middle Holocene (9.0 - 3.2 ka BP), the palaeovegetations were sequentially conifer and broad-leaved deciduous mixed forest and sclerophyllous broad-leaved forest (104degrees - 98degrees E) - conifer and broad-leaved deciduous mixed forest (98degrees - 94degrees E) - shrub meadow (94degrees - 92degrees E) - steppe (92degrees - 80degrees E). During the late Holocene (after 3.2 ka BP), the palaeovegetations were sequentially sclerophyllous broad-leaved forest - conifer and broad-leaved deciduous mixed forest - meadow - steppe - desert from east to west of the Plateau.展开更多
Pollen analyses of 85 samples from the San-jiaocheng section well along the margin of a palaeolake at the end of the Shiyang River, NW China, show that Picea and Sabina dominate the pollen assemblage. Together they re...Pollen analyses of 85 samples from the San-jiaocheng section well along the margin of a palaeolake at the end of the Shiyang River, NW China, show that Picea and Sabina dominate the pollen assemblage. Together they reach as high as 40%-60%, with the percentage of Picea varying inversely with that of Sabina. Similar results were obtained from another section in the Shiyang River drainage. Using modern ecological habitat relationship analogues, pol-len transport characteristics, and the overall pollen assem-blage, we propose that both Picea and Sabina pollen were transported by the river from the mountains at the upper reaches of the Shiyang River, and that the assemblage is more indicative of changes in upland vegetation than of local conditions near the section. This interpretation is supported by pollen data derived from surface samples, water samples, and riverbed samples. Using a moisture indicator (the Picea to Sabina ratio) and calculated pollen concentrations, we identify a series of展开更多
Paleoenvironmental history in the monsoonal margin in the northeast Tibetan Pla- teau provides important clue to the regional climate. Previous researches have been limited by either poor chronology or low resolution....Paleoenvironmental history in the monsoonal margin in the northeast Tibetan Pla- teau provides important clue to the regional climate. Previous researches have been limited by either poor chronology or low resolution. Here we present a high-resolution pollen record from a 40.92-m-long sediment core (DLH) taken from Dalianhai, a terminal lake situated in the Gonghe Basin, the northeast Tibetan Plateau for reconstructing the vegetation and climate history since the last deglacial on the basis of a chronology controlled by 10 AMS 14C dates on plant remains preserved in the core sediments. The pollen assemblages in DLH core can be partitioned into 6 pollen zones and each zone is mainly characterized by the growth and decline of tree or herb pollen percentage. During the periods of 14.8-12.9 ka and 9.4-3.9 ka, the subalpine arboreal and local herbaceous pollen increased, indicating the subalpine forest developed in the surrounding mountains and a desert steppe or typical steppe developed in Gonghe Basin under a relatively moister climate. During the periods of 15.8-14.8 ka, 12.9-9.4 ka and 3.9-1.4 ka, the forest shrank or disappeared according to different degrees of aridity, and the desert steppe degraded to a more arid steppe desert in the basin, indicating a dry climate. After 1.4 ka, vegetation type around Dalianhai was mainly dominated by steppe suggested by increased Artemisia. Our results suggested the climate history in this region was dry from 15.8-14.8 ka, humid from 14.8-12.9 ka and dry from 12.9-9.4 ka, after which the climate was humid during 9.4-3.9 ka, followed by dry conditions during 3.9-1.4 ka and humid conditions in the last 1.4 ka. The change of pollen percentage and the evolution of palaeovegetation in Dalianhai since the last deglacial were similar to those recorded in Qinghai Lake. The forest expanded in the mountains around Dalianhai during the Bol- ling-Aller^d period, shrank during the Younger Dryas and the early Holocene, then it devel- oped and reached its maximum in the mid-Holocene. During the late Holocene, the vegetation began to shrink till disappearance. However, the timing of forest expansion in the Holocene lagged behind that of Qinghai Lake, and this spatial heterogeneity was probably caused by the different forest species between these two places. The maximum of forest development in the mid-Holocene was inconsistent with the period of stronger summer monsoon in the early Holocene indicated by stalagmite records, the reason might be related to the complexity of vegetation response to a large-scale climatic change.展开更多
A total of 1362 archaeological sites from the Paleolithic Age to the Warring States time in Hubei Province increase gradually from west to east and from high land to low land.The number of Paleolithic sites with altit...A total of 1362 archaeological sites from the Paleolithic Age to the Warring States time in Hubei Province increase gradually from west to east and from high land to low land.The number of Paleolithic sites with altitude of 50-500 m account for 78% of the whole,while 71%-95% of sites from the Neolithic Age to the Warring States time mainly distribute at the areas of 0-200 m.The temporal-spatial distribution of archeological sites in this area is affected by two factors.For one thing,the human beings of every period need to choose the first or the second terrace as living sites which are near water source and are easy to withstand flood.Additionally,affecting by the regional tectonic uplift since the Holocene,down cutting of rivers can form new river valley,and lateral erosion and accumulation of river in stable time of tectonic movement can result in increasing of many new terraces.So,the human beings migrated to adapt to the change of terrace location,leading to the sites increase gradually in the lower areas of the central and eastern parts of this province.For other things,the temporal-spatial distribution of archeological sites in this area is affected by the climate condition.The Paleolithic sites mostly distribute in the Hanshui River Valley in northeastern Shiyan,southeast of Jinzhou and east of Jinmen,which is because rivers distributed in higher areas in this period.During the Chengbeixi Culture period,the sites are rare in the quondam Paleolithic sites distribution area,but increase obviously along the Yangtze River near the southwest Yichang.The spore-pollen record of Dajiuhu Basin indicates that only 23 Chengbeixi cultural sites may be related to more precipitation and flood during the Holocene wet and hot period.The Daxi Culture,Qujialing Culture and Shijiahe Culture are corresponding to middle and top of the Dajiuhu spore-pollen Zone Ⅳ,during which the climate is in order as a whole and is propitious to agricultural development.In the Qujialing Culture period,32 of original 34 Daxi cultural sites disappeared,while 90 sites increase abruptly in the higher highlands in the north of Xiangfan-Jinmen-Xiaogan,which may respect with enlarging of water areas.The Chu Culture period is corresponding to Dajiuhu spore-pollen Zone V,which is in warm and dry Holocene phase,but it seems that the climate condition is still propitious to agricultural cultivation and the number of archeological sites increase heavily to 593.In addition,there are the least archaeological sites in the lake areas of southeast Hubei Province because of low-lying topography with altitude of 0-50 m and the severest flood.展开更多
We present the major results from studies of fire history over the last 11000 years(Holocene) in southern Sweden, on the basis of palaeoecological analyses of peat sequences from three small peat bogs. The main object...We present the major results from studies of fire history over the last 11000 years(Holocene) in southern Sweden, on the basis of palaeoecological analyses of peat sequences from three small peat bogs. The main objective is to emphasize the value of multiple, continuous sedimentary records of macroscopic charcoal(macro-C) for the reconstruction of local to regional past changes in fire regimes, the importance of multi-proxy studies, and the advantage of model-based estimates of plant cover from pollen data to assess the role of tree composition and human impact in fire history. The chronologies at the three study sites are based on a large number of 14 C dates from terrestrial plant remains and age-depth models are achieved using Bayesian statistics. Fire history is inferred from continuous records of macro-C and microscopic charcoal counts on pollen slides. The Landscape Reconstruction Algorithm(LRA) for pollen-based quantitative reconstruction of local vegetation cover is applied on the three pollen records for plant cover reconstruction over the entire Holocene. The results are as follows:(1) the long-term trends in fire regimes are similar between sites, i.e., frequent fires during the early Holocene until ca. 9 ka BP, low fire frequency during the mid-Holocene, and higher fire frequency from ca. 2.5 ka BP;(2) this broad trend agrees with the overall fire history of northwestern and western Europe north of the Mediterranean area, and is due to climate forcing in the early and mid-Holocene, and to anthropogenic land-use in the late Holocene;(3) the LRA estimates of plant cover at the three sites demonstrate that the relative abundance of pine played a primordial role in the early and mid-Holocene fire history; and(4) the between-site differences in the charcoal records and inferred fire history are due to local factors(i.e., relative abundance of pine, geomorphological setting, and anthropogenic land-use) and taphonomy of charcoal deposition in the small peat bogs. It is shown that continuous macro-C records are most useful to disentangle local from regional-subcontinental fire history, and climate-induced from human-induced fire regimes, and that pollen-based LRA estimates of local plant cover are more adequate than pollen percentages for the assessment of the role of plant composition on fire history.展开更多
Palynological records were selected from the profiles of three research sites in the mountainous interior of southern China(Dajiuhu at Shennongjia in the western part of Hubei Province, Dahu in the Nanling Mountains, ...Palynological records were selected from the profiles of three research sites in the mountainous interior of southern China(Dajiuhu at Shennongjia in the western part of Hubei Province, Dahu in the Nanling Mountains, and Gantang in the northern part of Fujian Province). It can be inferred that the forest vegetation growing in the south of the Qinling Mountains-Huaihe River was luxuriant during the late glaciation. The species succession with ecological significance in palaeoflora(Abies sp., Fagus sp. and Alnus sp.) revealed that there was a certain amount of precipitation and effective humidity in the mountain lands between Qinling Mountains-Huaihe River and Nanling Mountains. This ecological environment favored the zonal distribution of mountainous forest vegetation. The late glacial maximum featured a cold, wet climate that completely differed from the cold-dry climate on the Loess Plateau, and on the steppe and desert steppe of the Qinghai-Tibet Plateau. Besides being influenced by the predominant factors driving the Northern Hemisphere climate, the cold-wet climate feature of the mountainous interior of southern China was closely associated with some geographical factors such as the latitudinal position, proximity to the ocean, and the topography and landforms.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant # 41301045)
文摘1 Introduction The northeastern Qinghai-Tibetan Plateau(NE QTP),located at a triple junction of influences of the Asian summer monsoon,westerly jet stream and Siberian high,is of considerable significance with regard to regional responses to global climate change.Qarhan Salt Lake is the largest playa located in the central eastern
文摘Comprehensive studies on the basis of pollen records from lake cores at 30 sites in the Qinghai-Xizang Plateau have been used to reconstruct temporal-spatial distributions of Holocene vegetations. Before the, Holocene (prior to 12.0 ka BP) desert steppe vegetation was developed from the, east to the west in the most parts of the Plateau, with a few exceptions in the extreme southeastern appeared. During the early Holocene ( 12.0 - 9.0 ka BP) deciduous broad-leaved forest/conifer and broad-leaved deciduous mixed forest were distributed in the east of Plateau (104degrees - 98degrees E). Meadows or shrub, meadow appeared in the middle of tire Plateau (98degrees - 92degrees E). Farther west to about 80degrees E, a steppe landscape was present. During the middle Holocene (9.0 - 3.2 ka BP), the palaeovegetations were sequentially conifer and broad-leaved deciduous mixed forest and sclerophyllous broad-leaved forest (104degrees - 98degrees E) - conifer and broad-leaved deciduous mixed forest (98degrees - 94degrees E) - shrub meadow (94degrees - 92degrees E) - steppe (92degrees - 80degrees E). During the late Holocene (after 3.2 ka BP), the palaeovegetations were sequentially sclerophyllous broad-leaved forest - conifer and broad-leaved deciduous mixed forest - meadow - steppe - desert from east to west of the Plateau.
基金. This work was supported by the National Natural Science Foundation of China (Grant Nos. 49731010 and 49871072).
文摘Pollen analyses of 85 samples from the San-jiaocheng section well along the margin of a palaeolake at the end of the Shiyang River, NW China, show that Picea and Sabina dominate the pollen assemblage. Together they reach as high as 40%-60%, with the percentage of Picea varying inversely with that of Sabina. Similar results were obtained from another section in the Shiyang River drainage. Using modern ecological habitat relationship analogues, pol-len transport characteristics, and the overall pollen assem-blage, we propose that both Picea and Sabina pollen were transported by the river from the mountains at the upper reaches of the Shiyang River, and that the assemblage is more indicative of changes in upland vegetation than of local conditions near the section. This interpretation is supported by pollen data derived from surface samples, water samples, and riverbed samples. Using a moisture indicator (the Picea to Sabina ratio) and calculated pollen concentrations, we identify a series of
基金This work was supported by the National Key Research and Development Program of China(2022YFF0801501 and 2016YFA0600500)the National Natural Science Foundation of China(41902184,42072205,and 42077414)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(311022010).
基金National Natural Science Foundation of China, No.41102112 No.41021061+1 种基金 Fundamental Research Funds for the Central Universities, No.CCNU12A01001 111 Program of Chinese Ministry of Science and Technology, No.B06026
文摘Paleoenvironmental history in the monsoonal margin in the northeast Tibetan Pla- teau provides important clue to the regional climate. Previous researches have been limited by either poor chronology or low resolution. Here we present a high-resolution pollen record from a 40.92-m-long sediment core (DLH) taken from Dalianhai, a terminal lake situated in the Gonghe Basin, the northeast Tibetan Plateau for reconstructing the vegetation and climate history since the last deglacial on the basis of a chronology controlled by 10 AMS 14C dates on plant remains preserved in the core sediments. The pollen assemblages in DLH core can be partitioned into 6 pollen zones and each zone is mainly characterized by the growth and decline of tree or herb pollen percentage. During the periods of 14.8-12.9 ka and 9.4-3.9 ka, the subalpine arboreal and local herbaceous pollen increased, indicating the subalpine forest developed in the surrounding mountains and a desert steppe or typical steppe developed in Gonghe Basin under a relatively moister climate. During the periods of 15.8-14.8 ka, 12.9-9.4 ka and 3.9-1.4 ka, the forest shrank or disappeared according to different degrees of aridity, and the desert steppe degraded to a more arid steppe desert in the basin, indicating a dry climate. After 1.4 ka, vegetation type around Dalianhai was mainly dominated by steppe suggested by increased Artemisia. Our results suggested the climate history in this region was dry from 15.8-14.8 ka, humid from 14.8-12.9 ka and dry from 12.9-9.4 ka, after which the climate was humid during 9.4-3.9 ka, followed by dry conditions during 3.9-1.4 ka and humid conditions in the last 1.4 ka. The change of pollen percentage and the evolution of palaeovegetation in Dalianhai since the last deglacial were similar to those recorded in Qinghai Lake. The forest expanded in the mountains around Dalianhai during the Bol- ling-Aller^d period, shrank during the Younger Dryas and the early Holocene, then it devel- oped and reached its maximum in the mid-Holocene. During the late Holocene, the vegetation began to shrink till disappearance. However, the timing of forest expansion in the Holocene lagged behind that of Qinghai Lake, and this spatial heterogeneity was probably caused by the different forest species between these two places. The maximum of forest development in the mid-Holocene was inconsistent with the period of stronger summer monsoon in the early Holocene indicated by stalagmite records, the reason might be related to the complexity of vegetation response to a large-scale climatic change.
基金National Natural Science Foundation of China, No.40971115 University Doctoral Foundation, No.20090091110036+3 种基金 Open Foundation of the State Key Laboratory of Loess and Quaternary Geology from the Institute of Earth Environment, CAS, No.SKLLQG0817 Test Foundation of Modem Analyses Center of Nanjing University, No.0209001309 Foundation of the Ministry of Science and Technology of the People's Republic of China, No.2010BAK67B02 Scientific Research Foundation of Graduate School of Nanjing University, No.2011CL 11 Acknowledgements The authors would like to thank Prof. Wang Hongxing, Prof. Meng Huaping, Prof. Zheng Chaogui and Mr. Liu Hui for their comments in the process of sorting out materials and preparing this manuscript.
文摘A total of 1362 archaeological sites from the Paleolithic Age to the Warring States time in Hubei Province increase gradually from west to east and from high land to low land.The number of Paleolithic sites with altitude of 50-500 m account for 78% of the whole,while 71%-95% of sites from the Neolithic Age to the Warring States time mainly distribute at the areas of 0-200 m.The temporal-spatial distribution of archeological sites in this area is affected by two factors.For one thing,the human beings of every period need to choose the first or the second terrace as living sites which are near water source and are easy to withstand flood.Additionally,affecting by the regional tectonic uplift since the Holocene,down cutting of rivers can form new river valley,and lateral erosion and accumulation of river in stable time of tectonic movement can result in increasing of many new terraces.So,the human beings migrated to adapt to the change of terrace location,leading to the sites increase gradually in the lower areas of the central and eastern parts of this province.For other things,the temporal-spatial distribution of archeological sites in this area is affected by the climate condition.The Paleolithic sites mostly distribute in the Hanshui River Valley in northeastern Shiyan,southeast of Jinzhou and east of Jinmen,which is because rivers distributed in higher areas in this period.During the Chengbeixi Culture period,the sites are rare in the quondam Paleolithic sites distribution area,but increase obviously along the Yangtze River near the southwest Yichang.The spore-pollen record of Dajiuhu Basin indicates that only 23 Chengbeixi cultural sites may be related to more precipitation and flood during the Holocene wet and hot period.The Daxi Culture,Qujialing Culture and Shijiahe Culture are corresponding to middle and top of the Dajiuhu spore-pollen Zone Ⅳ,during which the climate is in order as a whole and is propitious to agricultural development.In the Qujialing Culture period,32 of original 34 Daxi cultural sites disappeared,while 90 sites increase abruptly in the higher highlands in the north of Xiangfan-Jinmen-Xiaogan,which may respect with enlarging of water areas.The Chu Culture period is corresponding to Dajiuhu spore-pollen Zone V,which is in warm and dry Holocene phase,but it seems that the climate condition is still propitious to agricultural cultivation and the number of archeological sites increase heavily to 593.In addition,there are the least archaeological sites in the lake areas of southeast Hubei Province because of low-lying topography with altitude of 0-50 m and the severest flood.
基金the financial support from the Faculty of Health and Life Sciences of the Linnaeus University (Kalmar, Sweden)
文摘We present the major results from studies of fire history over the last 11000 years(Holocene) in southern Sweden, on the basis of palaeoecological analyses of peat sequences from three small peat bogs. The main objective is to emphasize the value of multiple, continuous sedimentary records of macroscopic charcoal(macro-C) for the reconstruction of local to regional past changes in fire regimes, the importance of multi-proxy studies, and the advantage of model-based estimates of plant cover from pollen data to assess the role of tree composition and human impact in fire history. The chronologies at the three study sites are based on a large number of 14 C dates from terrestrial plant remains and age-depth models are achieved using Bayesian statistics. Fire history is inferred from continuous records of macro-C and microscopic charcoal counts on pollen slides. The Landscape Reconstruction Algorithm(LRA) for pollen-based quantitative reconstruction of local vegetation cover is applied on the three pollen records for plant cover reconstruction over the entire Holocene. The results are as follows:(1) the long-term trends in fire regimes are similar between sites, i.e., frequent fires during the early Holocene until ca. 9 ka BP, low fire frequency during the mid-Holocene, and higher fire frequency from ca. 2.5 ka BP;(2) this broad trend agrees with the overall fire history of northwestern and western Europe north of the Mediterranean area, and is due to climate forcing in the early and mid-Holocene, and to anthropogenic land-use in the late Holocene;(3) the LRA estimates of plant cover at the three sites demonstrate that the relative abundance of pine played a primordial role in the early and mid-Holocene fire history; and(4) the between-site differences in the charcoal records and inferred fire history are due to local factors(i.e., relative abundance of pine, geomorphological setting, and anthropogenic land-use) and taphonomy of charcoal deposition in the small peat bogs. It is shown that continuous macro-C records are most useful to disentangle local from regional-subcontinental fire history, and climate-induced from human-induced fire regimes, and that pollen-based LRA estimates of local plant cover are more adequate than pollen percentages for the assessment of the role of plant composition on fire history.
基金supported by the National Key Basic Research Program of China (Grant No. 2015CB953804)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China (Grant Nos. 41472141 & 41072127)
文摘Palynological records were selected from the profiles of three research sites in the mountainous interior of southern China(Dajiuhu at Shennongjia in the western part of Hubei Province, Dahu in the Nanling Mountains, and Gantang in the northern part of Fujian Province). It can be inferred that the forest vegetation growing in the south of the Qinling Mountains-Huaihe River was luxuriant during the late glaciation. The species succession with ecological significance in palaeoflora(Abies sp., Fagus sp. and Alnus sp.) revealed that there was a certain amount of precipitation and effective humidity in the mountain lands between Qinling Mountains-Huaihe River and Nanling Mountains. This ecological environment favored the zonal distribution of mountainous forest vegetation. The late glacial maximum featured a cold, wet climate that completely differed from the cold-dry climate on the Loess Plateau, and on the steppe and desert steppe of the Qinghai-Tibet Plateau. Besides being influenced by the predominant factors driving the Northern Hemisphere climate, the cold-wet climate feature of the mountainous interior of southern China was closely associated with some geographical factors such as the latitudinal position, proximity to the ocean, and the topography and landforms.