As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data so...As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.展开更多
We established a hydrodynamic model to simulate the pollutant transport and decay process in the case of a pollution incident in the sections of the Yangtze and the Jialing passing through the city area of Chongqing. ...We established a hydrodynamic model to simulate the pollutant transport and decay process in the case of a pollution incident in the sections of the Yangtze and the Jialing passing through the city area of Chongqing. The Boussinesq assumptions and the Navier-Stokes equations of incompressible fluid were applied to setting up the pollutant diffusion equations and the equations for the decay process. E. colt was taken as the example pollutant, and chloride dosage, light, temperature and ultraviolet intensity were considered in the equations for bacterial decay process. The calculated values of the fluid velocities in the two rivers agree well with corresponding measured results, indicating an ideal accuracy of the model. In simulation, the concentration of E. colt in water was assumed to be zero before the accident. The and 1.75 m/s for the Yangtze flow, and the downriver boundary was upriver boundary velocity was -1.35 m/s for the Jialing flow water depth set at 0. Simulation results show that the bacteria are transported downstream along the riverbank. A long and narrow pollutant belt develops at 12 h after the start of the accident ascribed to the quick longitudinal transfer. After the pollution sources are cut off, the pollutant concentration decreases slowly, mostly by advection and diffusion, suggesting inadequate self-purification ability of the rivers and the necessity of effective decontaminating measures in the case of a pollution incident, The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body of the Three Gorges Reservoir.展开更多
Water pollution is a global environmental issue with multi-dimensional infl uences on human life.Some strategies,such as photo-Fenton reaction,have been employed to remove recalcitrant pollutants.Two-dimensional(2D)gr...Water pollution is a global environmental issue with multi-dimensional infl uences on human life.Some strategies,such as photo-Fenton reaction,have been employed to remove recalcitrant pollutants.Two-dimensional(2D)graphene and its threedimensional(3D)confi gurations have attracted considerable attention as emerging carbon-based catalysts in photo-Fenton fi elds owing to their alluring properties in electron transfer,reactant adsorption,and light response.This review summarizes the recent developments in 2D and 3D graphene-based catalysts for photo-Fenton reactions.Their structures,characteristics,activity,and mechanisms are discussed.The conclusions and outlooks are proposed for the profound understanding of challenges and future directions.展开更多
To provide effective environmental management for total amount control of atmospheric pollutants. Methods An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shan...To provide effective environmental management for total amount control of atmospheric pollutants. Methods An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shantou of Guangdong Province on the basis of an overall assessment of regional natural environment, social economic state of development, pollution sources and atmospheric environmental quality. Compared with actual monitoring results in a studied region, simulation values fell within the range of two times of error and were evenly distributed in the two sides of the monitored values. Predicted with the largest emission model method, the largest emission of sulfur dioxide would be 54 279.792 tons per year in 2010. Conclusion The mathematical model established and revised on the basis of GIS is more rational and suitable for the regional characteristics of total amount control of air pollutants.展开更多
The late start of environmental protection in Hong Kong was discussed in the light of problems encountered during the development of environmental protection legislation in Hong Kong for the past 20 years. The collabo...The late start of environmental protection in Hong Kong was discussed in the light of problems encountered during the development of environmental protection legislation in Hong Kong for the past 20 years. The collaboration in monitoring and assessment of environmental pollutants between the University of Hong Kong and various governments were descrbed in parallel with the progress in environmental protection in Hong Kong. The developments of new analytical techniques for environmental monitoring and analysis is given and their application in environmental control described. The joint projects in assessment and control of environmental pollutants carried out in collaboration with local industries and other organizations within and without the university are given and discussed. The problems and possible solution facing Hong Kong in development control equipment for small scale industries are discussed and areas of development identified. The development and experience in the monitoring assessment and control of environmental pollutants in Hong Kong are summarized and areas of difficulties are illustrated.展开更多
A combined process of catalytic ozonation in the presence of a novel heterogeneous catalyst and biological activated carbon was investigated for the removal of priority control organic pollutants, the reduction of gen...A combined process of catalytic ozonation in the presence of a novel heterogeneous catalyst and biological activated carbon was investigated for the removal of priority control organic pollutants, the reduction of genotoxicity, and the improvement of biodegradable dissolved organic carbon (BDOC). Results confirm that the catalytic ozonation has higher effectiveness for the removal of refractory harmful organic pollutants, the reduction of genotoxicity and the increase of bio-degradability of organics than ozonation alone, which results in lower pollution load for subsequent biological activated carbon process, and then leads to less organic pollutants penetrating biological activated carbon. The novel catalytic ozonation with this combined process exhibits excellent performance to guarantee the safety of drinking water.展开更多
The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard, even though the total annual air pollu...The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard, even though the total annual air pollutant emission is permitted under the total air pollutant emission amount control (TAPEAC) on the basis of A-value method. So the concept of the environmental quality guarantee ratio (EQGR) for TAPEAC is advanced in this paper and its quantitative formula is figured out for both hourly and daily EQGR. It is concluded that the EQGR is related with the yearly arrangement of A-value besides the pollutant type. According to the meteorological data in a lower area along Yangtze River in 2000, the yearly A-value trend is analyzed. Based on the data, the hourly EQGR of SO 2 and NO 2 is respectively 97.4% and 90.2%, and daily EQGR respectively 90.2% and 79.5%.展开更多
Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybde...Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybdenum oxide,tungsten oxide,and cerium oxide were used to reconfigure the redox sites and acid sites of red mud based catalyst.When activated red mud was reconfigured by cerium-tungsten oxide(Ce-W@RM),the NOx conversion kept above 90%at 219-480℃.The existence of Ce^(3+)/Ce^(4+) redox electron pairs provided more surface adsorbed oxygen(O_(α)) and served as a redox cycle.Positive interactions between Ce,W species and Fe oxide in red mud occurred,which led to the formation of unsaturated chemical bond and promoted the activation of adsorbed NH_(3) species.WO_(3) and Ce_(2)(WO_(4))_(3)(formed by solid-state reaction between Ce and W species)could provide more Brønsted acid sites(W-O modes of WO_(3),W=O or W-O-W modes of Ce_(2)(WO_(4))_(3)).CeO_(2) species could provide more Lewis acid sites.The Langmuir-Hinshelwood(L-H)routes and Eley-Rideal(E-R)routes occurred in the low-temperature SCR reaction on the Ce-W@RM surface.NH_(4)^(+) species on Brønsted acid sites,NH_(3) species on Lewis acid sites,bidentate nitrate and bridging nitrate species were key active intermediates species.展开更多
The efficacies of biological and conventional chemical insecticides against two major insect pests of alfalfa(aphids and thrips)were compared in three sites across China’s alfalfa belt.In addition,the persistence of ...The efficacies of biological and conventional chemical insecticides against two major insect pests of alfalfa(aphids and thrips)were compared in three sites across China’s alfalfa belt.In addition,the persistence of the residues of chemical insecticides in alfalfa and their influence on the quality of alfalfa hay were examined.Efficacy varied among the different biological and chemical insecticides.The chemical insecticides were significantly more effective than biopesticides in a short time-frame.The efficacy period of biopesticides was significantly longer than that of chemical insecticides,and the corrected mortality rate of aphids in all regions was above 50%at 14 days after application.The analysis of pesticide residues showed that the residual doses of all the pesticides were within the allowed ranges after the safe period.The acid detergent fiber and neutral detergent fiber contents in alfalfa hay were higher and the protein content was lower in chemical insecticide treatments than in biopesticide treatments in Hebei.The relative feeding value of alfalfa hay treated with Metarhizium anisopliae IPP330189 was the highest among the treatments.Compared with chemical insecticides,the yield of alfalfa hay was higher in the biopesticides treatments.Biopesticides show a stronger control effect on insect populations and also a better improvement in the quality of alfalfa hay than chemical insecticides.This study provides a basis for exploring and developing a comprehensive control regime for alfalfa insect pests in the different alfalfa-growing regions in China,and for reducing chemical insecticide usage and improving forage quality.展开更多
A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such...A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such synergistic effects;hence, existing studies lack a consistent framework for comparison. Here, we introduce a new synergistic indicator defined as the pollutant generation per gross domestic product (GDP) and adopt an integrated analysis framework by linking the logarithmic mean Divisia index (LMDI) method, response surface model (RSM), and global exposure mortality model (GEMM) to evaluate the synergistic effects of carbon mitigation on both air pollutant reduction and public health in China. The results show that synergistic effects played an increasingly important role in the emissions mitigation of SO_(2), NOx, and primary particulate matter with an aerodynamic diameter no greater than 2.5 μm (PM2.5), and the synergistic mitigation of pollutants respectively increase from 3.1, 1.4, and 0.3 Mt during the 11th Five-Year Plan (FYP) (2006–2010) to 5.6, 3.7, and 1.9 Mt during the 12th FYP (2011–2015). Against the non-control scenario, synergistic effects alone contributed to a 15% reduction in annual mean PM2.5 concentration, resulting in the prevention of 0.29 million (95% confidential interval: 0.28–0.30) PM2.5-attributable excess deaths in 2015. Synergistic benefits to air quality improvement and public health were remarkable in the developed and population-dense eastern provinces and municipalities. With the processes of urbanization and carbon neutrality in the future, synergistic effects are expected to continue to increase. Realizing climate targets in advance in developed regions would concurrently bring strong synergistic effects to air quality and public health.展开更多
Controlling marine pollution caused by hydrocarbons spilling from oil tanker accidents and oil rigs is urgently needed.Conventional pollution control vessels currently in service worldwide do not meet certain safety c...Controlling marine pollution caused by hydrocarbons spilling from oil tanker accidents and oil rigs is urgently needed.Conventional pollution control vessels currently in service worldwide do not meet certain safety criteria,storage capacities,and response times owing to their technical shortcomings.This study proposes a new concept of multimission and autonomous antipollution vessels capable of acting quickly and efficiently to counter such pollution threats.The objective of this study is to carry out a total and rapid recovery of the spilled oil slick in complete safety.Hence,optimizing the bulbous bow adapted to the pollution control vessel during its displacement is necessary to horizontally straighten the accompanying waves formed around the hull and to laminate the flow upstream of the side openings for the recovery of spilled oil.This optimization improves the nautical qualities specific to this ship to reduce the total resistance to progress and to standardize the flow upstream of the side openings to allow the collection of spilled oil at high speed.This optimization study can open a field of application for the construction of modern multi-mission pollution control vessels.Tests in hull basins will be planned to validate and adjust the results obtained from the simulations.展开更多
The Bohai Sea(BS)is the unique semi-closed inland sea of China,characterized by degraded water quality due to significant terrestrial pollution input.In order to improve its water quality,a dedicated action named“Uph...The Bohai Sea(BS)is the unique semi-closed inland sea of China,characterized by degraded water quality due to significant terrestrial pollution input.In order to improve its water quality,a dedicated action named“Uphill Battles for Integrated Bohai Sea Management”(UBIBSM,2018–2020)was implemented by the Chinese government.To evaluate the action effectiveness toward water quality improvement,variability of the satelliteobserved water transparency(Secchi disk depth,Z_(SD))was explored,with special emphasis on the nearshore waters(within 20 km from the coastline)prone to terrestrial influence.(1)Compared to the status before the action began(2011–2017),majority(87.3%)of the nearshore waters turned clear during the action implementation period(2018–2020),characterized by the elevated Z_(SD)by 11.6%±12.1%.(2)Nevertheless,the improvement was not spatially uniform,with higher Z_(SD)improvement in provinces of Hebei,Liaoning,and Shandong(13.2%±16.5%,13.2%±11.6%,10.8%±10.2%,respectively)followed by Tianjin(6.2%±4.7%).(3)Bayesian trend analysis found the abrupt Z_(SD)improvement in April 2018,which coincided with the initiation of UBIBSM,implying the water quality response to pollution control.More importantly,the independent statistics of land-based pollutant discharge also indicated that the significant reduction of terrestrial pollutant input during the UBIBSM action was the main driver of observed Z_(SD)improvement.(4)Compared with previous pollution control actions in the BS,UBIBSM was found to be the most successful one during the past 20 years,in terms of transparency improvement over nearshore waters.The presented results proved the UBIBSM-achieved remarkable water quality improvement,taking the advantage of long-term consistent and objective data record from satellite ocean color observation.展开更多
Introduction: The Indian state of Uttar Pradesh (UP) for the past many years has been reported to have many cities with highly polluted air quality. The state has been taking meticulous steps in combating air pollutio...Introduction: The Indian state of Uttar Pradesh (UP) for the past many years has been reported to have many cities with highly polluted air quality. The state has been taking meticulous steps in combating air pollution in the form of action plans, introduced especially in its 17 non-attainment cities (NAC). To assess the progress and development of these action plans in UP, the present study has done an in-depth analysis and review of the state’s action plans and city micro action plans. Materials and Methods: In this research study, the analysis of the latest action plan reports, micro action plan reports as well as the recommendations for combating air pollution-related issues in the 17 NAC of the UP state has been well documented. Uttar Pradesh Pollution Control Board (UPPCB) has prepared these reports to highlight the progress of the plans in response to the growing air pollution in these cities. The information present in the reports has been used to further study sector-specific, category-specific action plans, institutional responsibility, and the present status of the action plans. Results: On average, the highest weightage in action plans was given to sector-specific categories such as Road dust and construction activities (24%). It was also observed that Urban local bodies (~50%) were majorly responsible to implement the action points and 56% of the action points were jointly implemented by multiple agencies.展开更多
The Floridan aquifer system underlies the United States (US) Southeastern Coastal Plain Physiographic Region. Anthropogenic groundwater declines in that regional karst aquifer system, via semi-confining zones, have be...The Floridan aquifer system underlies the United States (US) Southeastern Coastal Plain Physiographic Region. Anthropogenic groundwater declines in that regional karst aquifer system, via semi-confining zones, have been documented in published literature for decades. These anthropogenic groundwater declines reduce surfacewater levels and flows, which increases saltwater intrusion and alters the physical, chemical, and biological integrity of the nation’s waters, in violation of the US Clean Water Act (CWA) of 1972. Historic groundwater declines from mining and other anthropogenic groundwater withdrawals from this regional karst aquifer system already threaten the survival and recovery of marine and aquatic federally endangered and threatened species, as well as existing and proposed critical habitat for those species within the Southeastern Coastal Plain Ecoregion. Examples of marine and aquatic species and their designated critical habitat adversely affected by groundwater declines in the Greater Okefenokee Swamp Basin of this ecoregion include the federally endangered south Atlantic Distinct Population Segments (DPS) of the Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus), shortnose sturgeon (Acipenser brevirostrum), and oval pigtoe mussel (Pleurobema pyriforme), as well as the federally threatened Gulf subspecies of the Atlantic sturgeon (Acipenser oxyrinchus desotoi) and Suwannee moccasinshell (Medionidus walkeri). In 2020, rules were adopted by two federal agencies allowing significant further degradation of the physical, chemical, and biological integrity of the nation’s waters that are essential for maintaining federally listed species and their habitat in this Ecoregion. The US Fish and Wildlife Service (USFWS) has acknowledged the harm to these species and critical habitat from mining and additional groundwater alterations, but no comprehensive Areawide Environmental Impact Statement (AEIS), similar to the AEIS required for mining within the Peace River Basin, has been conducted for any of the numerous mining projects that are expanding and proposed within the Greater Okefenokee Swamp Basin to evaluate all indirect and cumulative adverse impacts to all federally listed species.展开更多
The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic pe...The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.展开更多
This paper describes the relation and difference of "emission up to standards" and "total quantity control" ofmain atmospheric pollutants, as well as their legal status. It points out that the tota...This paper describes the relation and difference of "emission up to standards" and "total quantity control" ofmain atmospheric pollutants, as well as their legal status. It points out that the total quantity control is a good approachto solve a problem that environmental quality do not yet reach the requirements in an area where emission concentrationhas came up to standards, or to solve a problem that the interregional transportation of pollutants (e. g. acid rain) arises.And further, it put forward five proposals for the total quantity control.[展开更多
Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal...Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology re search and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.展开更多
Lake eutrophication has increasingly become a major environmental issue in China. Although significant efforts have been made towards its resolution in the last decade, most of the implemented control strategies are f...Lake eutrophication has increasingly become a major environmental issue in China. Although significant efforts have been made towards its resolution in the last decade, most of the implemented control strategies are fragmented, and the formation of policy lacks of sound scientific basis and long\|term objectives. Taking the well\|known Dianchi Lake as a case study, this paper presented a comprehensive assessment for the effectiveness of various eutrophication control strategies. It is expected that the concluding lessons would have a major implication to future eutrophication control.展开更多
China’s past economic growth has substantially relied on fossil fuels,causing serious air pollution issues.Decoupling economic growth and pollution has become the focus in developing ecological civilization in China....China’s past economic growth has substantially relied on fossil fuels,causing serious air pollution issues.Decoupling economic growth and pollution has become the focus in developing ecological civilization in China.We have analyzed the three-decade progress of air pollution controls in China,highlighting a strategic transformation from emission control toward air quality management.Emission control of sulfur dioxide(SO2)resolved the deteriorating acid rain issue in China in 2007.Since 2013,control actions on multiple precursors and sectors have targeted the reduction of the concentration of fine particulate matter(PM2.5),marking a transition to an air-quality-oriented strategy.Increasing ozone(O3)pollution further requires O3 and PM2.5 integrated control strategies with an emphasis on their complex photochemical interactions.Fundamental improvement of air quality in China,as a key indicator for the success of ecological civilization construction,demands the deep de-carbonization of China’s energy system as well as more synergistic pathways to address air pollution and global climate change simultaneously.展开更多
文摘As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.
基金Chongqing University Postgraduates’ Science and Innovation Fund (No.200701Y1B0270213)
文摘We established a hydrodynamic model to simulate the pollutant transport and decay process in the case of a pollution incident in the sections of the Yangtze and the Jialing passing through the city area of Chongqing. The Boussinesq assumptions and the Navier-Stokes equations of incompressible fluid were applied to setting up the pollutant diffusion equations and the equations for the decay process. E. colt was taken as the example pollutant, and chloride dosage, light, temperature and ultraviolet intensity were considered in the equations for bacterial decay process. The calculated values of the fluid velocities in the two rivers agree well with corresponding measured results, indicating an ideal accuracy of the model. In simulation, the concentration of E. colt in water was assumed to be zero before the accident. The and 1.75 m/s for the Yangtze flow, and the downriver boundary was upriver boundary velocity was -1.35 m/s for the Jialing flow water depth set at 0. Simulation results show that the bacteria are transported downstream along the riverbank. A long and narrow pollutant belt develops at 12 h after the start of the accident ascribed to the quick longitudinal transfer. After the pollution sources are cut off, the pollutant concentration decreases slowly, mostly by advection and diffusion, suggesting inadequate self-purification ability of the rivers and the necessity of effective decontaminating measures in the case of a pollution incident, The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body of the Three Gorges Reservoir.
文摘Water pollution is a global environmental issue with multi-dimensional infl uences on human life.Some strategies,such as photo-Fenton reaction,have been employed to remove recalcitrant pollutants.Two-dimensional(2D)graphene and its threedimensional(3D)confi gurations have attracted considerable attention as emerging carbon-based catalysts in photo-Fenton fi elds owing to their alluring properties in electron transfer,reactant adsorption,and light response.This review summarizes the recent developments in 2D and 3D graphene-based catalysts for photo-Fenton reactions.Their structures,characteristics,activity,and mechanisms are discussed.The conclusions and outlooks are proposed for the profound understanding of challenges and future directions.
文摘To provide effective environmental management for total amount control of atmospheric pollutants. Methods An atmospheric diffusion model of sulfur dioxide on the surface of the earth was established and tested in Shantou of Guangdong Province on the basis of an overall assessment of regional natural environment, social economic state of development, pollution sources and atmospheric environmental quality. Compared with actual monitoring results in a studied region, simulation values fell within the range of two times of error and were evenly distributed in the two sides of the monitored values. Predicted with the largest emission model method, the largest emission of sulfur dioxide would be 54 279.792 tons per year in 2010. Conclusion The mathematical model established and revised on the basis of GIS is more rational and suitable for the regional characteristics of total amount control of air pollutants.
文摘The late start of environmental protection in Hong Kong was discussed in the light of problems encountered during the development of environmental protection legislation in Hong Kong for the past 20 years. The collaboration in monitoring and assessment of environmental pollutants between the University of Hong Kong and various governments were descrbed in parallel with the progress in environmental protection in Hong Kong. The developments of new analytical techniques for environmental monitoring and analysis is given and their application in environmental control described. The joint projects in assessment and control of environmental pollutants carried out in collaboration with local industries and other organizations within and without the university are given and discussed. The problems and possible solution facing Hong Kong in development control equipment for small scale industries are discussed and areas of development identified. The development and experience in the monitoring assessment and control of environmental pollutants in Hong Kong are summarized and areas of difficulties are illustrated.
基金Sponsored by the National High Technology Research and Development Program (863) of China(Grant No. 2006AA06Z306)the National Natural Science Foundation of China(Grant No.50578051)
文摘A combined process of catalytic ozonation in the presence of a novel heterogeneous catalyst and biological activated carbon was investigated for the removal of priority control organic pollutants, the reduction of genotoxicity, and the improvement of biodegradable dissolved organic carbon (BDOC). Results confirm that the catalytic ozonation has higher effectiveness for the removal of refractory harmful organic pollutants, the reduction of genotoxicity and the increase of bio-degradability of organics than ozonation alone, which results in lower pollution load for subsequent biological activated carbon process, and then leads to less organic pollutants penetrating biological activated carbon. The novel catalytic ozonation with this combined process exhibits excellent performance to guarantee the safety of drinking water.
文摘The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard, even though the total annual air pollutant emission is permitted under the total air pollutant emission amount control (TAPEAC) on the basis of A-value method. So the concept of the environmental quality guarantee ratio (EQGR) for TAPEAC is advanced in this paper and its quantitative formula is figured out for both hourly and daily EQGR. It is concluded that the EQGR is related with the yearly arrangement of A-value besides the pollutant type. According to the meteorological data in a lower area along Yangtze River in 2000, the yearly A-value trend is analyzed. Based on the data, the hourly EQGR of SO 2 and NO 2 is respectively 97.4% and 90.2%, and daily EQGR respectively 90.2% and 79.5%.
基金supported by the National Natural Science Foundation of China(21906090)the National Key Research and Development Program(2017YFC0210200,2017YFC0212800)Primary Research&Development Project of Shandong Province(2018GSF117034,2019JZZY020305).
文摘Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybdenum oxide,tungsten oxide,and cerium oxide were used to reconfigure the redox sites and acid sites of red mud based catalyst.When activated red mud was reconfigured by cerium-tungsten oxide(Ce-W@RM),the NOx conversion kept above 90%at 219-480℃.The existence of Ce^(3+)/Ce^(4+) redox electron pairs provided more surface adsorbed oxygen(O_(α)) and served as a redox cycle.Positive interactions between Ce,W species and Fe oxide in red mud occurred,which led to the formation of unsaturated chemical bond and promoted the activation of adsorbed NH_(3) species.WO_(3) and Ce_(2)(WO_(4))_(3)(formed by solid-state reaction between Ce and W species)could provide more Brønsted acid sites(W-O modes of WO_(3),W=O or W-O-W modes of Ce_(2)(WO_(4))_(3)).CeO_(2) species could provide more Lewis acid sites.The Langmuir-Hinshelwood(L-H)routes and Eley-Rideal(E-R)routes occurred in the low-temperature SCR reaction on the Ce-W@RM surface.NH_(4)^(+) species on Brønsted acid sites,NH_(3) species on Lewis acid sites,bidentate nitrate and bridging nitrate species were key active intermediates species.
基金supported by China Agriculture Research System of MOF and MARA(CARS-34).
文摘The efficacies of biological and conventional chemical insecticides against two major insect pests of alfalfa(aphids and thrips)were compared in three sites across China’s alfalfa belt.In addition,the persistence of the residues of chemical insecticides in alfalfa and their influence on the quality of alfalfa hay were examined.Efficacy varied among the different biological and chemical insecticides.The chemical insecticides were significantly more effective than biopesticides in a short time-frame.The efficacy period of biopesticides was significantly longer than that of chemical insecticides,and the corrected mortality rate of aphids in all regions was above 50%at 14 days after application.The analysis of pesticide residues showed that the residual doses of all the pesticides were within the allowed ranges after the safe period.The acid detergent fiber and neutral detergent fiber contents in alfalfa hay were higher and the protein content was lower in chemical insecticide treatments than in biopesticide treatments in Hebei.The relative feeding value of alfalfa hay treated with Metarhizium anisopliae IPP330189 was the highest among the treatments.Compared with chemical insecticides,the yield of alfalfa hay was higher in the biopesticides treatments.Biopesticides show a stronger control effect on insect populations and also a better improvement in the quality of alfalfa hay than chemical insecticides.This study provides a basis for exploring and developing a comprehensive control regime for alfalfa insect pests in the different alfalfa-growing regions in China,and for reducing chemical insecticide usage and improving forage quality.
基金supported by the National Natural Science Foundation of China(72025401,71974108,and 72140003)the Tsinghua University-INDITEX Sustainable Development Fund.
文摘A synergistic pathway is regarded as a critical measure for tackling the intertwined challenges of climate change and air pollution in China. However, there is as yet no indicator that can comprehensively reflect such synergistic effects;hence, existing studies lack a consistent framework for comparison. Here, we introduce a new synergistic indicator defined as the pollutant generation per gross domestic product (GDP) and adopt an integrated analysis framework by linking the logarithmic mean Divisia index (LMDI) method, response surface model (RSM), and global exposure mortality model (GEMM) to evaluate the synergistic effects of carbon mitigation on both air pollutant reduction and public health in China. The results show that synergistic effects played an increasingly important role in the emissions mitigation of SO_(2), NOx, and primary particulate matter with an aerodynamic diameter no greater than 2.5 μm (PM2.5), and the synergistic mitigation of pollutants respectively increase from 3.1, 1.4, and 0.3 Mt during the 11th Five-Year Plan (FYP) (2006–2010) to 5.6, 3.7, and 1.9 Mt during the 12th FYP (2011–2015). Against the non-control scenario, synergistic effects alone contributed to a 15% reduction in annual mean PM2.5 concentration, resulting in the prevention of 0.29 million (95% confidential interval: 0.28–0.30) PM2.5-attributable excess deaths in 2015. Synergistic benefits to air quality improvement and public health were remarkable in the developed and population-dense eastern provinces and municipalities. With the processes of urbanization and carbon neutrality in the future, synergistic effects are expected to continue to increase. Realizing climate targets in advance in developed regions would concurrently bring strong synergistic effects to air quality and public health.
文摘Controlling marine pollution caused by hydrocarbons spilling from oil tanker accidents and oil rigs is urgently needed.Conventional pollution control vessels currently in service worldwide do not meet certain safety criteria,storage capacities,and response times owing to their technical shortcomings.This study proposes a new concept of multimission and autonomous antipollution vessels capable of acting quickly and efficiently to counter such pollution threats.The objective of this study is to carry out a total and rapid recovery of the spilled oil slick in complete safety.Hence,optimizing the bulbous bow adapted to the pollution control vessel during its displacement is necessary to horizontally straighten the accompanying waves formed around the hull and to laminate the flow upstream of the side openings for the recovery of spilled oil.This optimization improves the nautical qualities specific to this ship to reduce the total resistance to progress and to standardize the flow upstream of the side openings to allow the collection of spilled oil at high speed.This optimization study can open a field of application for the construction of modern multi-mission pollution control vessels.Tests in hull basins will be planned to validate and adjust the results obtained from the simulations.
基金The fund supported by Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. SML2021SP313the fundamental research funds for the Central Universities of Sun Yat-Sen University under contract No.23xkjc019the fund supported by China-Korea Joint Ocean Research Center of China under contract No. PI-2022-1-01
文摘The Bohai Sea(BS)is the unique semi-closed inland sea of China,characterized by degraded water quality due to significant terrestrial pollution input.In order to improve its water quality,a dedicated action named“Uphill Battles for Integrated Bohai Sea Management”(UBIBSM,2018–2020)was implemented by the Chinese government.To evaluate the action effectiveness toward water quality improvement,variability of the satelliteobserved water transparency(Secchi disk depth,Z_(SD))was explored,with special emphasis on the nearshore waters(within 20 km from the coastline)prone to terrestrial influence.(1)Compared to the status before the action began(2011–2017),majority(87.3%)of the nearshore waters turned clear during the action implementation period(2018–2020),characterized by the elevated Z_(SD)by 11.6%±12.1%.(2)Nevertheless,the improvement was not spatially uniform,with higher Z_(SD)improvement in provinces of Hebei,Liaoning,and Shandong(13.2%±16.5%,13.2%±11.6%,10.8%±10.2%,respectively)followed by Tianjin(6.2%±4.7%).(3)Bayesian trend analysis found the abrupt Z_(SD)improvement in April 2018,which coincided with the initiation of UBIBSM,implying the water quality response to pollution control.More importantly,the independent statistics of land-based pollutant discharge also indicated that the significant reduction of terrestrial pollutant input during the UBIBSM action was the main driver of observed Z_(SD)improvement.(4)Compared with previous pollution control actions in the BS,UBIBSM was found to be the most successful one during the past 20 years,in terms of transparency improvement over nearshore waters.The presented results proved the UBIBSM-achieved remarkable water quality improvement,taking the advantage of long-term consistent and objective data record from satellite ocean color observation.
文摘Introduction: The Indian state of Uttar Pradesh (UP) for the past many years has been reported to have many cities with highly polluted air quality. The state has been taking meticulous steps in combating air pollution in the form of action plans, introduced especially in its 17 non-attainment cities (NAC). To assess the progress and development of these action plans in UP, the present study has done an in-depth analysis and review of the state’s action plans and city micro action plans. Materials and Methods: In this research study, the analysis of the latest action plan reports, micro action plan reports as well as the recommendations for combating air pollution-related issues in the 17 NAC of the UP state has been well documented. Uttar Pradesh Pollution Control Board (UPPCB) has prepared these reports to highlight the progress of the plans in response to the growing air pollution in these cities. The information present in the reports has been used to further study sector-specific, category-specific action plans, institutional responsibility, and the present status of the action plans. Results: On average, the highest weightage in action plans was given to sector-specific categories such as Road dust and construction activities (24%). It was also observed that Urban local bodies (~50%) were majorly responsible to implement the action points and 56% of the action points were jointly implemented by multiple agencies.
文摘The Floridan aquifer system underlies the United States (US) Southeastern Coastal Plain Physiographic Region. Anthropogenic groundwater declines in that regional karst aquifer system, via semi-confining zones, have been documented in published literature for decades. These anthropogenic groundwater declines reduce surfacewater levels and flows, which increases saltwater intrusion and alters the physical, chemical, and biological integrity of the nation’s waters, in violation of the US Clean Water Act (CWA) of 1972. Historic groundwater declines from mining and other anthropogenic groundwater withdrawals from this regional karst aquifer system already threaten the survival and recovery of marine and aquatic federally endangered and threatened species, as well as existing and proposed critical habitat for those species within the Southeastern Coastal Plain Ecoregion. Examples of marine and aquatic species and their designated critical habitat adversely affected by groundwater declines in the Greater Okefenokee Swamp Basin of this ecoregion include the federally endangered south Atlantic Distinct Population Segments (DPS) of the Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus), shortnose sturgeon (Acipenser brevirostrum), and oval pigtoe mussel (Pleurobema pyriforme), as well as the federally threatened Gulf subspecies of the Atlantic sturgeon (Acipenser oxyrinchus desotoi) and Suwannee moccasinshell (Medionidus walkeri). In 2020, rules were adopted by two federal agencies allowing significant further degradation of the physical, chemical, and biological integrity of the nation’s waters that are essential for maintaining federally listed species and their habitat in this Ecoregion. The US Fish and Wildlife Service (USFWS) has acknowledged the harm to these species and critical habitat from mining and additional groundwater alterations, but no comprehensive Areawide Environmental Impact Statement (AEIS), similar to the AEIS required for mining within the Peace River Basin, has been conducted for any of the numerous mining projects that are expanding and proposed within the Greater Okefenokee Swamp Basin to evaluate all indirect and cumulative adverse impacts to all federally listed species.
基金Supported by " Research on The Control Technology of Subtropical Agriculture Pollution System" Special Project of National Environment Protection Public Welfare Industry Science Research "Research on The Construction Strategy of Ecological Civilization" Development Plan Research Project of State Development and Reform Commission+1 种基金Xiangxiang " High-output and Efficient Cultivation of High Quality Rice and Processing Technology Industrialization Demonstration " in The Plan Test Site of National Science and Technology Enriching People and Developing County Special Project Action" Xiangxiang Middle and Long-term Development Plan of Modern Agriculture" of Subtropical Agriculture Ecology Institute in Chinese Academy of Science
文摘The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.
文摘This paper describes the relation and difference of "emission up to standards" and "total quantity control" ofmain atmospheric pollutants, as well as their legal status. It points out that the total quantity control is a good approachto solve a problem that environmental quality do not yet reach the requirements in an area where emission concentrationhas came up to standards, or to solve a problem that the interregional transportation of pollutants (e. g. acid rain) arises.And further, it put forward five proposals for the total quantity control.[
基金Acknowledgements The authors gratefully acknowledge the funding support from the National Key Basic Research Program of China (2013CB228500), the National Natural Science Foundation of Chi- na (71203119), and the Advanced Coal Technology Consortium of CERC (2016YFE0102500).
文摘Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology re search and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.
文摘Lake eutrophication has increasingly become a major environmental issue in China. Although significant efforts have been made towards its resolution in the last decade, most of the implemented control strategies are fragmented, and the formation of policy lacks of sound scientific basis and long\|term objectives. Taking the well\|known Dianchi Lake as a case study, this paper presented a comprehensive assessment for the effectiveness of various eutrophication control strategies. It is expected that the concluding lessons would have a major implication to future eutrophication control.
基金the National Key Research Development Program of China(2016YFC0208901 and 2017YFC0212100)the National Natural Science Foundation of China(71722003 and 71690244)。
文摘China’s past economic growth has substantially relied on fossil fuels,causing serious air pollution issues.Decoupling economic growth and pollution has become the focus in developing ecological civilization in China.We have analyzed the three-decade progress of air pollution controls in China,highlighting a strategic transformation from emission control toward air quality management.Emission control of sulfur dioxide(SO2)resolved the deteriorating acid rain issue in China in 2007.Since 2013,control actions on multiple precursors and sectors have targeted the reduction of the concentration of fine particulate matter(PM2.5),marking a transition to an air-quality-oriented strategy.Increasing ozone(O3)pollution further requires O3 and PM2.5 integrated control strategies with an emphasis on their complex photochemical interactions.Fundamental improvement of air quality in China,as a key indicator for the success of ecological civilization construction,demands the deep de-carbonization of China’s energy system as well as more synergistic pathways to address air pollution and global climate change simultaneously.