Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions...Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.展开更多
The high-speed rail(HSR)network in China has experienced rapid development since the 2000s.In 2016,the State Council of the People’s Republic of China issued a revised version of the“Mid-and Long-term Railway Networ...The high-speed rail(HSR)network in China has experienced rapid development since the 2000s.In 2016,the State Council of the People’s Republic of China issued a revised version of the“Mid-and Long-term Railway Network Plan”,detailing the expansion of the railway network and construction of an HSR system.In the future,the HSR construction efforts in China will further increase,which is considered to impact regional development and air pollutant emissions.Therefore,in this paper,we apply a transportation network-multiregional computable general equilibrium(CGE)model to estimate the dynamic effects of HSR projects on economic growth,regional disparities,and air pollutant emissions in China.The results indicate that HSR system improvement could generate a positive economic impact but could also increase emissions.The gross domestic product(GDP)growth per unit investment cost stimulated by HSR investment is found to be the largest in eastern China but the smallest in the northwest regions.Conversely,HSR investment in Northwest China contributes to a substantial reduction in regional disparities in terms of the GDP per capita.In regard to air pollution emissions,HSR construction in South-Central China results in the largest increase in CO_(2) and NO_(X) emissions,while for CO,SO_(2),and fine particulate matter(PM_(2.5))emissions,the largest increase occurs due to HSR construction in Northwest China.At the regional level,the provinces with large changes in accessibility also experience large changes in their air pollutant emissions.展开更多
Air pollution is a major issue related to national economy and people's livelihood.At present,the researches on air pollution mostly focus on the pollutant emissions in a specific industry or region as a whole,and...Air pollution is a major issue related to national economy and people's livelihood.At present,the researches on air pollution mostly focus on the pollutant emissions in a specific industry or region as a whole,and is a lack of attention to enterprise pollutant emissions from the micro level.Limited by the amount and time granularity of data from enterprises,enterprise pollutant emissions are stll understudied.Driven by big data of air pollution emissions of industrial enterprises monitored in Beijing-Tianjin-Hebei,the data mining of enterprises pollution emissions is carried out in the paper,including the association analysis between different features based on grey association,the association mining between different data based on association rule and the outlier detection based on clustering.The results show that:(1)The industries affecting NOx and SO2 mainly are electric power,heat production and supply industry,metal smelting and processing industries in Beijing-Tianjin-Hebei;(2)These districts nearby Hengshui and Shijiazhuang city in Hebei province form strong association rules;(3)The industrial enterprises in Beijing-Tianjin-Hebei are divided into six clusters,of which three categories belong to outliers with excessive emissions of total vOCs,PM and NH3 respectively.展开更多
The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous c...The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous coal (SB) were investigated in a 0.35 MW pilot-scale pulverized coal-fired furnace. The gas temperature and concentrations of gaseous species (O2, CO, CO_(2), NO_(x) and HCN) were measured in the primary combustion zone at different blend ratios. It is found that the standoff distance of ignition changes monotonically from 132 to 384 mm with the increase in pyrolyzed semi-char blend ratio. The effects on the combustion characteristics may be neglected when the blend ratio is less than 30%. Above the 30% blend ratio, the increase in blend ratio postpones ignition in the primary stage and lowers the burnout rate. With the blend ratio increasing, NO_(x) emission at the furnace exit is smallest for the 30% blend ratio and highest for the 100% SC. The NO_(x) concentration was 425 mg/m^(3) at 6% O_(2) and char burnout was 76.23% for the 45% blend ratio. The above results indicate that the change of standoff distance and NO_(x) emission were not obvious when the blend ratio of semi-char is less than 45%, and carbon burnout changed a little at all blend ratios. The goal of this study is to achieve blending combustion with a large proportion of semi-char without great changes in combustion characteristics. So, an SC blend ratio of no more than 45% can be suitable for the burning of semi-char.展开更多
Investigation showed that mercury emission in Chongqing City, China is about 2.1 t/a, 70% of which came from coal burning.Mercury in many water bodies have been detected, in vegetables and milk had exceeded the food ...Investigation showed that mercury emission in Chongqing City, China is about 2.1 t/a, 70% of which came from coal burning.Mercury in many water bodies have been detected, in vegetables and milk had exceeded the food standard value in some places.展开更多
This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor. Different oxygen concentrations (Xoxy=25%~45%, where Xox...This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor. Different oxygen concentrations (Xoxy=25%~45%, where Xoxy is oxygen concentra- tion by volume), equivalence ratios (φ=0.75~1.15) and combustion powers (CP=1.08~2.02 kW) were investigated in the oxy-fuel (CH4/CO2/O2) combustions, and reference cases (Xoxy=25%~35%, CH4/N2/O2 flames) were covered. The results show that the oxygen concentration in the oxidant stream significantly affects the combustion delay in the oxy-fuel flames, and the equivalence ratio has a slight effect, whereas the combustion power shows no impact. The temperature levels of the oxy-fuel flames inside the combustion chamber are much higher (up to 38.7%) than those of the reference cases. Carbon monoxide was vastly produced when Xoxy>35% or φ>0.95 in the oxy-fuel flames, while no nitric oxide was found in the exhaust gases because no N2 participates in the combustion process. The combustion instability of the oxy-fuel combustion is very different from those of the reference cases with similar oxygen content. Oxy-fuel combustions excite strong oscillations in all cases studied Xoxy=25%~45%. However, no pressure fluctuations were detected in the reference cases when Xoxy>28.6% accomplished by heavily sooting flames which were not found in the oxy-fuel combustions. Spectrum analysis shows that the frequency of dynamic pressure oscillations exhibits randomness in the range of 50~250 Hz, therefore resulting in a very small resultant amplitude. Temporal oscillations are very strong with amplitudes larger than 200 Pa, even short time fast Fourier transform (FFT) analysis (0.08 s) shows that the pressure amplitude can be larger than 40 Pa.展开更多
In recent years,researchers have devoted considerable attention to identifying the causes of urban environmental pollution.To determine whether migrant populations significantly affect urban environments,we examined t...In recent years,researchers have devoted considerable attention to identifying the causes of urban environmental pollution.To determine whether migrant populations significantly affect urban environments,we examined the relationship between urban environmental pollutant emissions and migrant populations at the prefectural level using data obtained for 90 Chinese cities evidencing net in-migration.By dividing the permanent populations of these cities into natives and migrants in relation to the population structure,we constructed an improved Stochastic Impacts by Regression on Population,Affluence and Technology model(STIRPAT)that included not only environmental pollutant emission variables but also variables on the cities’attributes.We subsequently conducted detailed analyses of the results of the models to assess the impacts of natives and migrants on environmental pollutant emissions.The main findings of our study were as follows:1)Migrant populations have significant impacts on environmental emissions both in terms of their size and concentration.Specifically,migrant populations have negative impacts on Air Quality Index(AQI)as well as PM2.5 emissions and positive impacts on emissions of NO2 and CO2.2)The impacts of migrant populations on urban environmental pollutant emissions were 8 to 30 times weaker than that of local populations.3)Urban environmental pollutant emissions in different cities differ significantly according to variations in the industrial structures,public transportation facilities,and population densities.展开更多
Discharges and emissions in the coal mining process have a strong effect both on the environment and on human health. This problem is usually be a negative one and has only been recognized qualitatively, due to the la...Discharges and emissions in the coal mining process have a strong effect both on the environment and on human health. This problem is usually be a negative one and has only been recognized qualitatively, due to the lack of effective quantitative methods. Based on emergy theory and accounting methodology, a set of quantitative methods for accounting the environmental support due to pollutants emissions was first introduced. Then impacts on environment and effects on human health were quantified using the unified units. The results indicated that water pollutants caused more impacts on the environment than air pollutants did, i.e., more environmental contributions are needed to dilute and absorb water pollutants. The occupation of land caused by coal mining gangue waste stacking has led to a huge loss of environmental services over the years. Moreover, the potential damage on the human condition health caused by CO2 through climate change cannot be ignored. Finally, the impacts of mining activities on environmental and human health in unified units are shown to provide a quantitative insight into the disadvantage of coal mining. The comparable results of the method indicate the different influence of various pollutants and the contribution of 'natural capital' directly. This work is a part of ongoing thermodynamic input-output analysis and life cycle analysis of coal mining systems (which are in process.)展开更多
Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy ...Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.展开更多
The variation of toxic pollutants emission during a feeding cycle was examined by field monitoring from a batch feeding updraft fixed bed gasifier for disposing rural domestic solid waste. Results showed that the cont...The variation of toxic pollutants emission during a feeding cycle was examined by field monitoring from a batch feeding updraft fixed bed gasifier for disposing rural domestic solid waste. Results showed that the content of oxygen in flue gas gradually increased, while SO_2 and HCl in flue gas decreased with time after feeding in a whole feeding cycle. Although large amount of CO was produced during the gasifying, low CO content in flue gas could be obtained after the heat treatment with an electric heating device. The distribution characteristics of dioxin congeners in flue gas indicted the re-synthesis of dioxins after flue gas heating, and the increase of oxygen promoted the synthesis of dioxins. The emission content of dioxins could meet the standard(0.1 ng I-TEQ·m^(-3),GB18458-2014) of China when the oxygen content was controlled below 8.3%. Hence, for a batch feeding gasifier,low oxygen condition should be offered by reducing air intake at the later stage of feeding cycle in order to decrease the re-synthesis of dioxins after the flue gas heating.展开更多
The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard, even though the total annual air pollu...The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard, even though the total annual air pollutant emission is permitted under the total air pollutant emission amount control (TAPEAC) on the basis of A-value method. So the concept of the environmental quality guarantee ratio (EQGR) for TAPEAC is advanced in this paper and its quantitative formula is figured out for both hourly and daily EQGR. It is concluded that the EQGR is related with the yearly arrangement of A-value besides the pollutant type. According to the meteorological data in a lower area along Yangtze River in 2000, the yearly A-value trend is analyzed. Based on the data, the hourly EQGR of SO 2 and NO 2 is respectively 97.4% and 90.2%, and daily EQGR respectively 90.2% and 79.5%.展开更多
In order to investigate the effect of a certain type of fuel additives on the emission and performance of vehicles,according to the Limits and Measurement Methods for Exhaust Pollutants from Vehicles Equipped Ignition...In order to investigate the effect of a certain type of fuel additives on the emission and performance of vehicles,according to the Limits and Measurement Methods for Exhaust Pollutants from Vehicles Equipped Ignition Engine under Two-speed Idle Conditions and Simple Driving Mode Conditions(GB 18285-2005),the double idle method is used to detect the emission changes of different vehicles before and after the use of a certain type of fuel additives,and then the fuel consumption and power are evaluated.The results show that the use of fuel additives and the appropriate selection of fuel can effectively reduce the emissions of vehicle pollutants,which is of great significance for energy saving and emission reduction.展开更多
Study is conducted on the life cycle assessment of bio-ethanol used for transportation vehicles and their emissions. The emissions that are analyzed include greenhouse gases, volatile organic compounds, sulfur oxide, ...Study is conducted on the life cycle assessment of bio-ethanol used for transportation vehicles and their emissions. The emissions that are analyzed include greenhouse gases, volatile organic compounds, sulfur oxide, carbon monoxide, nitrous oxide, particulate matter with the size less than 10 and 2.5 microns. Furthermore, various blends of bio-ethanol and gasoline are studied to learn about the impacts of higher blend on emissions. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model software are used to simulate for emissions. The research analyzes two pathways of emissions: Well-to-Pump and Pump-to-Vehicle analyses. It is found that the fuel cell vehicles using 100% bio-ethanol have shown the most reduction in the amount of all the pollutants from the Pump-to-Vehicle emission analysis. The Well-to-Pump analysis shows that only greenhouse gases (GHGs) reduce with higher blends of bio-ethanol. All other pollutants VOC, CO, NO<sub>x</sub>, SO<sub>x</sub>, PM10 and PM2.5 emissions increase with the higher blending ratios. The Pump-to-Vehicle analysis shows that all the pollutant emissions reduce with the percentage increase of bio-ethanol in the fuel blends.展开更多
[Objective]The aim was to study the characteristics of the emission of sulfur derivative pollutants in cyanobacteria.[Method]Based on water odor in drink water from Gonghu Bay in Lake Taihu,the sulfur derivatives poll...[Objective]The aim was to study the characteristics of the emission of sulfur derivative pollutants in cyanobacteria.[Method]Based on water odor in drink water from Gonghu Bay in Lake Taihu,the sulfur derivatives pollutants were extracted by head space solid phase microextraction(HS-SPME) and the odor substance was identified by gas chromatography and mass spectrometry(GC-MS).Decomposed simulation was conducted in closed tube of water and cyanobacteria samples collected from Gonghu Bay in Lake Taihu.The cyanobacteria rotten odor substances was analyzed and detected by HS-SPME-GC-MS for 10 days.The sulfur derivative pollutant was expounded.[Result]The primary or secondary metabolites by cyanobacteria in water samples such as β-cyclocitral,indol,methylphenol,mercaptan and thioether were detected with scan.During the decomposition process,the emission of β-cyclocitral changed little.The maximum emission of dimethyl trisulfide appeared on the seventh and eighth day.The maximum emission of dimethyl disulfide appeared on the forth day.The maximum emission of the diethyl sulfide was on the eighth and ninth day.The maximum concentration of dimethyl trisulfide was 2 344.79 ng/L,which was much more than the olfactory threshold.[Conclusion] The sewage in Gonghu Bay in the end of May in 2007 resulted from the accumulation of cyanobacteria.展开更多
A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.T...A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.The influence of the over-fired air(OFA)coefficient is examined and the impact of the blending ratio on the boiler operation is explored.The results show that for low blending ratios,a slight increase in the blending ratio can improve the combustion of bituminite,whereas a further increase leads to the deterioration of the combustion of blended fuels and thus reduces the boiler efficiency.Enhancing the supporting capability of the secondary air effectively reduces the slagging degree in the bottom ash hopper and improves the burnout rate of coals.For a large-percentage blending case at full load,it is found that the OFA coefficient must be reduced appropriately,otherwise,a secondary high-temperature combustion zone can be generated in the vicinity of the furnace arches,causing high temperature slagging and superheater tube bursting.Considering the influences of combustion and pollutant emissions,the recommended OFA coefficient is 0.2.Blending dried sludge under low loads increases the flue gas temperature at the furnace exit.While reducing the flue gas temperature in the main combustion region,which is beneficial to the safe operation of the denitrification system.Increasing the blending ratio and reducing load lead to an increase in NOx concentration at the furnace exit Sludges with low nitrogen content are suggested for the practical operation of boilers.展开更多
Assessing the iron and steel industry's(ISI)impact on climate change and environmental health is vital,particularly in China,where this sector significantly influences air quality and CO_(2)emissions.There is a la...Assessing the iron and steel industry's(ISI)impact on climate change and environmental health is vital,particularly in China,where this sector significantly influences air quality and CO_(2)emissions.There is a lack of comprehensive analyses that consider the environmental and health burdens of manufacturing processes for ISI enterprises.Here,we present an integrated emission inventory that encompasses air pollutants and CO_(2)emissions from 811 ISI enterprises and five key manufacturing processes in 2020.Our analysis shows that sintering is the primary source of air pollution in the ISI.It contributes 71%of SO_(2),73%of NO_(x),and 54%of PM_(2.5)emissions.On the other hand,81%of total CO_(2)emissions come from blast furnaces.Significantly,the contributions of ISI have resulted in an increase of 3.6 mg m^(-3)in national population-weighted PM_(2.5)concentration,causing approximately 59,035 premature deaths in 2020.Emissions from Hebei,Jiangsu,Shandong,Shanxi,and Inner Mongolia provinces contributed to 48%of PM_(2.5)-related deaths in China.Moreover,the transportation of air pollutants across provincial borders highlights a concerning trend of environmental health inequality.Based on the research findings,it is crucial for ISI manufacturers to prioritize the removal of outdated production capacities and adopt energy-efficient and advanced techniques,along with ultra-low emission technologies.This is particularly important for those manufacturers with substantial environmental footprints.These transformative actions are essential in mitigating the environmental and health impacts in the affected regions.展开更多
Although the relationship between the size of urban industrial land use and pollutant emissions has been widely discussed from different perspectives(e.g.,the scale and crowding effects),the results of various studies...Although the relationship between the size of urban industrial land use and pollutant emissions has been widely discussed from different perspectives(e.g.,the scale and crowding effects),the results of various studies have revealed positive,negative,and combined impact relationships.However,how the expansion of urban industrial land use affects SO_(2) emissions remains unknown.We need to clarify this relationship in order to facilitate the realization of China’s pollution reduction and emission reduction goals.This study used the panel data from 294 cities spanning from 2011 to 2019 to construct a spatial econometric model.The objective was to explore the correlation between the scale of urban industrial land and sulfur dioxide emissions in China.The results show that a large scale of urban industrial land use corresponds to lower sulfur dioxide emissions per unit of industrial added value.By gaining a deeper understanding of the relationship between the scale of urban industrial land use and sulfur dioxide emissions,policymakers can further reduce pollutant emissions by rationalizing the planning of urban industrial land use and industrial layout.In addition to promoting industrial agglomeration and economies of scale in cities with extensive industrial land use,this strategy can support the development of efficient and environmentally friendly industries in areas with limited industrial land use.Optimizing the technology and encouraging the development of green industries can help reduce environmental pollution and promote sustainable urban development.展开更多
The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simu...The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.展开更多
This paper describes the relation and difference of "emission up to standards" and "total quantity control" ofmain atmospheric pollutants, as well as their legal status. It points out that the tota...This paper describes the relation and difference of "emission up to standards" and "total quantity control" ofmain atmospheric pollutants, as well as their legal status. It points out that the total quantity control is a good approachto solve a problem that environmental quality do not yet reach the requirements in an area where emission concentrationhas came up to standards, or to solve a problem that the interregional transportation of pollutants (e. g. acid rain) arises.And further, it put forward five proposals for the total quantity control.[展开更多
A detailed chemical mechanism to describe the combustion of natural gas in internal combustion (IC) engine has been developed,which is consisting of 233 reversible reactions and 79 species.This mechanism accounts fo...A detailed chemical mechanism to describe the combustion of natural gas in internal combustion (IC) engine has been developed,which is consisting of 233 reversible reactions and 79 species.This mechanism accounts for the oxidation of methane,ethane,propane and nitrogen.It has been tested using IC engine model of CHEMKIN 4.1.1 and experimental measurements.The performance of the proposed mechanism was evaluated at various equivalence ratios (φ=0.6 to φ=1.3),initial reactor conditions (Tini=500 to 3500 ℃; Pini=1.0 to 10 atm) and engine speed (2000-7000 rpm).The proposed kinetic mechanism shows good concordances with GRI3.0 mechanism especially in the prediction of temperature,pressure and major product species (H2O,CO2) profiles at stoichiometric conditions (φ=1.0).The experimental results of measured cylinder pressure,species fractions were also in agreement with simulation results derived from the proposed kinetic mechanism.The proposed mechanism successfully predicts the formation of gaseous pollutants (CO,NO,NO2,NH3) in the engine exhaust.Although there are some discrepancies among each simulation profile,the proposed detailed mechanism is good to represent the combustion of natural gas in IC engine.展开更多
基金supported by the National Key Research and Development Program of China(2019YFC1904800)the National Natural Science Foundation of China(72274105).
文摘Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.
基金supported by funding from the National Natural Science Foundation of China(Nos.41821005 and 42077196).
文摘The high-speed rail(HSR)network in China has experienced rapid development since the 2000s.In 2016,the State Council of the People’s Republic of China issued a revised version of the“Mid-and Long-term Railway Network Plan”,detailing the expansion of the railway network and construction of an HSR system.In the future,the HSR construction efforts in China will further increase,which is considered to impact regional development and air pollutant emissions.Therefore,in this paper,we apply a transportation network-multiregional computable general equilibrium(CGE)model to estimate the dynamic effects of HSR projects on economic growth,regional disparities,and air pollutant emissions in China.The results indicate that HSR system improvement could generate a positive economic impact but could also increase emissions.The gross domestic product(GDP)growth per unit investment cost stimulated by HSR investment is found to be the largest in eastern China but the smallest in the northwest regions.Conversely,HSR investment in Northwest China contributes to a substantial reduction in regional disparities in terms of the GDP per capita.In regard to air pollution emissions,HSR construction in South-Central China results in the largest increase in CO_(2) and NO_(X) emissions,while for CO,SO_(2),and fine particulate matter(PM_(2.5))emissions,the largest increase occurs due to HSR construction in Northwest China.At the regional level,the provinces with large changes in accessibility also experience large changes in their air pollutant emissions.
基金supported by the National Natural Science Foundation of China[grant number 72271033]the Beijing Municipal Education Commission and Beijing Natural Science Foundation[grant number KZ202110017025]the National Undergraduate Innovation and Entrepreneurship Plan Project(2022J00244).
文摘Air pollution is a major issue related to national economy and people's livelihood.At present,the researches on air pollution mostly focus on the pollutant emissions in a specific industry or region as a whole,and is a lack of attention to enterprise pollutant emissions from the micro level.Limited by the amount and time granularity of data from enterprises,enterprise pollutant emissions are stll understudied.Driven by big data of air pollution emissions of industrial enterprises monitored in Beijing-Tianjin-Hebei,the data mining of enterprises pollution emissions is carried out in the paper,including the association analysis between different features based on grey association,the association mining between different data based on association rule and the outlier detection based on clustering.The results show that:(1)The industries affecting NOx and SO2 mainly are electric power,heat production and supply industry,metal smelting and processing industries in Beijing-Tianjin-Hebei;(2)These districts nearby Hengshui and Shijiazhuang city in Hebei province form strong association rules;(3)The industrial enterprises in Beijing-Tianjin-Hebei are divided into six clusters,of which three categories belong to outliers with excessive emissions of total vOCs,PM and NH3 respectively.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0602002).
文摘The effects of blend ratio on combustion and pollution emission characteristics for co-combustion of Shenmu pyrolyzed semi-char (SC), i.e., residuals of the coal pyrolysis chemical processing, and Shenhua bituminous coal (SB) were investigated in a 0.35 MW pilot-scale pulverized coal-fired furnace. The gas temperature and concentrations of gaseous species (O2, CO, CO_(2), NO_(x) and HCN) were measured in the primary combustion zone at different blend ratios. It is found that the standoff distance of ignition changes monotonically from 132 to 384 mm with the increase in pyrolyzed semi-char blend ratio. The effects on the combustion characteristics may be neglected when the blend ratio is less than 30%. Above the 30% blend ratio, the increase in blend ratio postpones ignition in the primary stage and lowers the burnout rate. With the blend ratio increasing, NO_(x) emission at the furnace exit is smallest for the 30% blend ratio and highest for the 100% SC. The NO_(x) concentration was 425 mg/m^(3) at 6% O_(2) and char burnout was 76.23% for the 45% blend ratio. The above results indicate that the change of standoff distance and NO_(x) emission were not obvious when the blend ratio of semi-char is less than 45%, and carbon burnout changed a little at all blend ratios. The goal of this study is to achieve blending combustion with a large proportion of semi-char without great changes in combustion characteristics. So, an SC blend ratio of no more than 45% can be suitable for the burning of semi-char.
文摘Investigation showed that mercury emission in Chongqing City, China is about 2.1 t/a, 70% of which came from coal burning.Mercury in many water bodies have been detected, in vegetables and milk had exceeded the food standard value in some places.
基金Project supported by the National Natural Science Foundation of China (No. 50576081)Zhejiang Provincial Natural Science Foundation of China (No. R107532)+1 种基金Program for the New Century Excellent Talents in University (No. NCET-07-0761)the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 200747)
文摘This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor. Different oxygen concentrations (Xoxy=25%~45%, where Xoxy is oxygen concentra- tion by volume), equivalence ratios (φ=0.75~1.15) and combustion powers (CP=1.08~2.02 kW) were investigated in the oxy-fuel (CH4/CO2/O2) combustions, and reference cases (Xoxy=25%~35%, CH4/N2/O2 flames) were covered. The results show that the oxygen concentration in the oxidant stream significantly affects the combustion delay in the oxy-fuel flames, and the equivalence ratio has a slight effect, whereas the combustion power shows no impact. The temperature levels of the oxy-fuel flames inside the combustion chamber are much higher (up to 38.7%) than those of the reference cases. Carbon monoxide was vastly produced when Xoxy>35% or φ>0.95 in the oxy-fuel flames, while no nitric oxide was found in the exhaust gases because no N2 participates in the combustion process. The combustion instability of the oxy-fuel combustion is very different from those of the reference cases with similar oxygen content. Oxy-fuel combustions excite strong oscillations in all cases studied Xoxy=25%~45%. However, no pressure fluctuations were detected in the reference cases when Xoxy>28.6% accomplished by heavily sooting flames which were not found in the oxy-fuel combustions. Spectrum analysis shows that the frequency of dynamic pressure oscillations exhibits randomness in the range of 50~250 Hz, therefore resulting in a very small resultant amplitude. Temporal oscillations are very strong with amplitudes larger than 200 Pa, even short time fast Fourier transform (FFT) analysis (0.08 s) shows that the pressure amplitude can be larger than 40 Pa.
基金Under the auspices of Shanxi Scholarship Council of China(No.2017-003)
文摘In recent years,researchers have devoted considerable attention to identifying the causes of urban environmental pollution.To determine whether migrant populations significantly affect urban environments,we examined the relationship between urban environmental pollutant emissions and migrant populations at the prefectural level using data obtained for 90 Chinese cities evidencing net in-migration.By dividing the permanent populations of these cities into natives and migrants in relation to the population structure,we constructed an improved Stochastic Impacts by Regression on Population,Affluence and Technology model(STIRPAT)that included not only environmental pollutant emission variables but also variables on the cities’attributes.We subsequently conducted detailed analyses of the results of the models to assess the impacts of natives and migrants on environmental pollutant emissions.The main findings of our study were as follows:1)Migrant populations have significant impacts on environmental emissions both in terms of their size and concentration.Specifically,migrant populations have negative impacts on Air Quality Index(AQI)as well as PM2.5 emissions and positive impacts on emissions of NO2 and CO2.2)The impacts of migrant populations on urban environmental pollutant emissions were 8 to 30 times weaker than that of local populations.3)Urban environmental pollutant emissions in different cities differ significantly according to variations in the industrial structures,public transportation facilities,and population densities.
基金Supported by the National Natural Science Foundation of China (41101560)
文摘Discharges and emissions in the coal mining process have a strong effect both on the environment and on human health. This problem is usually be a negative one and has only been recognized qualitatively, due to the lack of effective quantitative methods. Based on emergy theory and accounting methodology, a set of quantitative methods for accounting the environmental support due to pollutants emissions was first introduced. Then impacts on environment and effects on human health were quantified using the unified units. The results indicated that water pollutants caused more impacts on the environment than air pollutants did, i.e., more environmental contributions are needed to dilute and absorb water pollutants. The occupation of land caused by coal mining gangue waste stacking has led to a huge loss of environmental services over the years. Moreover, the potential damage on the human condition health caused by CO2 through climate change cannot be ignored. Finally, the impacts of mining activities on environmental and human health in unified units are shown to provide a quantitative insight into the disadvantage of coal mining. The comparable results of the method indicate the different influence of various pollutants and the contribution of 'natural capital' directly. This work is a part of ongoing thermodynamic input-output analysis and life cycle analysis of coal mining systems (which are in process.)
基金Projects(51476069,51676084)supported by the National Natural Science Foundation of ChinaProject(2019C058-3)supported by the Jilin Provincial Industrial Innovation Special Guidance Fund Project,China+1 种基金Project(20180101059JC)supported by the Jilin Provincial Science and Technology Development Plan Project,ChinaProject(2020C025-2)supported by the Jilin Provincial Specific Project of Industrial Technology Research&Development,China。
文摘Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.
基金Supported by the Science and Technology Planning Project of Guangdong Province,China(2013B090600134)the National Natural Science Foundation of China(51608223)the Fund for Basic Scientific Research Business of Central Institutes of Environmental Protection(PM-zx 703-201602-050)
文摘The variation of toxic pollutants emission during a feeding cycle was examined by field monitoring from a batch feeding updraft fixed bed gasifier for disposing rural domestic solid waste. Results showed that the content of oxygen in flue gas gradually increased, while SO_2 and HCl in flue gas decreased with time after feeding in a whole feeding cycle. Although large amount of CO was produced during the gasifying, low CO content in flue gas could be obtained after the heat treatment with an electric heating device. The distribution characteristics of dioxin congeners in flue gas indicted the re-synthesis of dioxins after flue gas heating, and the increase of oxygen promoted the synthesis of dioxins. The emission content of dioxins could meet the standard(0.1 ng I-TEQ·m^(-3),GB18458-2014) of China when the oxygen content was controlled below 8.3%. Hence, for a batch feeding gasifier,low oxygen condition should be offered by reducing air intake at the later stage of feeding cycle in order to decrease the re-synthesis of dioxins after the flue gas heating.
文摘The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard, even though the total annual air pollutant emission is permitted under the total air pollutant emission amount control (TAPEAC) on the basis of A-value method. So the concept of the environmental quality guarantee ratio (EQGR) for TAPEAC is advanced in this paper and its quantitative formula is figured out for both hourly and daily EQGR. It is concluded that the EQGR is related with the yearly arrangement of A-value besides the pollutant type. According to the meteorological data in a lower area along Yangtze River in 2000, the yearly A-value trend is analyzed. Based on the data, the hourly EQGR of SO 2 and NO 2 is respectively 97.4% and 90.2%, and daily EQGR respectively 90.2% and 79.5%.
文摘In order to investigate the effect of a certain type of fuel additives on the emission and performance of vehicles,according to the Limits and Measurement Methods for Exhaust Pollutants from Vehicles Equipped Ignition Engine under Two-speed Idle Conditions and Simple Driving Mode Conditions(GB 18285-2005),the double idle method is used to detect the emission changes of different vehicles before and after the use of a certain type of fuel additives,and then the fuel consumption and power are evaluated.The results show that the use of fuel additives and the appropriate selection of fuel can effectively reduce the emissions of vehicle pollutants,which is of great significance for energy saving and emission reduction.
文摘Study is conducted on the life cycle assessment of bio-ethanol used for transportation vehicles and their emissions. The emissions that are analyzed include greenhouse gases, volatile organic compounds, sulfur oxide, carbon monoxide, nitrous oxide, particulate matter with the size less than 10 and 2.5 microns. Furthermore, various blends of bio-ethanol and gasoline are studied to learn about the impacts of higher blend on emissions. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model software are used to simulate for emissions. The research analyzes two pathways of emissions: Well-to-Pump and Pump-to-Vehicle analyses. It is found that the fuel cell vehicles using 100% bio-ethanol have shown the most reduction in the amount of all the pollutants from the Pump-to-Vehicle emission analysis. The Well-to-Pump analysis shows that only greenhouse gases (GHGs) reduce with higher blends of bio-ethanol. All other pollutants VOC, CO, NO<sub>x</sub>, SO<sub>x</sub>, PM10 and PM2.5 emissions increase with the higher blending ratios. The Pump-to-Vehicle analysis shows that all the pollutant emissions reduce with the percentage increase of bio-ethanol in the fuel blends.
基金Supported by National Science and Technology Support Plan(2007BAC26B02-M)Doctorate Scientific Research Fund in Zaozhuang College (2010UZZB056)
文摘[Objective]The aim was to study the characteristics of the emission of sulfur derivative pollutants in cyanobacteria.[Method]Based on water odor in drink water from Gonghu Bay in Lake Taihu,the sulfur derivatives pollutants were extracted by head space solid phase microextraction(HS-SPME) and the odor substance was identified by gas chromatography and mass spectrometry(GC-MS).Decomposed simulation was conducted in closed tube of water and cyanobacteria samples collected from Gonghu Bay in Lake Taihu.The cyanobacteria rotten odor substances was analyzed and detected by HS-SPME-GC-MS for 10 days.The sulfur derivative pollutant was expounded.[Result]The primary or secondary metabolites by cyanobacteria in water samples such as β-cyclocitral,indol,methylphenol,mercaptan and thioether were detected with scan.During the decomposition process,the emission of β-cyclocitral changed little.The maximum emission of dimethyl trisulfide appeared on the seventh and eighth day.The maximum emission of dimethyl disulfide appeared on the forth day.The maximum emission of the diethyl sulfide was on the eighth and ninth day.The maximum concentration of dimethyl trisulfide was 2 344.79 ng/L,which was much more than the olfactory threshold.[Conclusion] The sewage in Gonghu Bay in the end of May in 2007 resulted from the accumulation of cyanobacteria.
文摘A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.The influence of the over-fired air(OFA)coefficient is examined and the impact of the blending ratio on the boiler operation is explored.The results show that for low blending ratios,a slight increase in the blending ratio can improve the combustion of bituminite,whereas a further increase leads to the deterioration of the combustion of blended fuels and thus reduces the boiler efficiency.Enhancing the supporting capability of the secondary air effectively reduces the slagging degree in the bottom ash hopper and improves the burnout rate of coals.For a large-percentage blending case at full load,it is found that the OFA coefficient must be reduced appropriately,otherwise,a secondary high-temperature combustion zone can be generated in the vicinity of the furnace arches,causing high temperature slagging and superheater tube bursting.Considering the influences of combustion and pollutant emissions,the recommended OFA coefficient is 0.2.Blending dried sludge under low loads increases the flue gas temperature at the furnace exit.While reducing the flue gas temperature in the main combustion region,which is beneficial to the safe operation of the denitrification system.Increasing the blending ratio and reducing load lead to an increase in NOx concentration at the furnace exit Sludges with low nitrogen content are suggested for the practical operation of boilers.
基金supported by the National Natural Science Foundation of China[Grant No.72174126,72243008].
文摘Assessing the iron and steel industry's(ISI)impact on climate change and environmental health is vital,particularly in China,where this sector significantly influences air quality and CO_(2)emissions.There is a lack of comprehensive analyses that consider the environmental and health burdens of manufacturing processes for ISI enterprises.Here,we present an integrated emission inventory that encompasses air pollutants and CO_(2)emissions from 811 ISI enterprises and five key manufacturing processes in 2020.Our analysis shows that sintering is the primary source of air pollution in the ISI.It contributes 71%of SO_(2),73%of NO_(x),and 54%of PM_(2.5)emissions.On the other hand,81%of total CO_(2)emissions come from blast furnaces.Significantly,the contributions of ISI have resulted in an increase of 3.6 mg m^(-3)in national population-weighted PM_(2.5)concentration,causing approximately 59,035 premature deaths in 2020.Emissions from Hebei,Jiangsu,Shandong,Shanxi,and Inner Mongolia provinces contributed to 48%of PM_(2.5)-related deaths in China.Moreover,the transportation of air pollutants across provincial borders highlights a concerning trend of environmental health inequality.Based on the research findings,it is crucial for ISI manufacturers to prioritize the removal of outdated production capacities and adopt energy-efficient and advanced techniques,along with ultra-low emission technologies.This is particularly important for those manufacturers with substantial environmental footprints.These transformative actions are essential in mitigating the environmental and health impacts in the affected regions.
基金The Yunnan Fundamental Research Projects(202301AT070062,202401AT070108,202401AS070037)The Key Program of the NationalNatural Science Foundation of China(42130712)+2 种基金The Scientific Research Fund Project of Yunnan Provincial Department of Education(2024Y155)The Yunnan Province Innovation Team Project(202305AS350003)The Yunnan Revitalization Talent Support Program in YunnanProvince(XDYC-QNRC-2022-0740,XDYC-WHMJ-2022-0016).
文摘Although the relationship between the size of urban industrial land use and pollutant emissions has been widely discussed from different perspectives(e.g.,the scale and crowding effects),the results of various studies have revealed positive,negative,and combined impact relationships.However,how the expansion of urban industrial land use affects SO_(2) emissions remains unknown.We need to clarify this relationship in order to facilitate the realization of China’s pollution reduction and emission reduction goals.This study used the panel data from 294 cities spanning from 2011 to 2019 to construct a spatial econometric model.The objective was to explore the correlation between the scale of urban industrial land and sulfur dioxide emissions in China.The results show that a large scale of urban industrial land use corresponds to lower sulfur dioxide emissions per unit of industrial added value.By gaining a deeper understanding of the relationship between the scale of urban industrial land use and sulfur dioxide emissions,policymakers can further reduce pollutant emissions by rationalizing the planning of urban industrial land use and industrial layout.In addition to promoting industrial agglomeration and economies of scale in cities with extensive industrial land use,this strategy can support the development of efficient and environmentally friendly industries in areas with limited industrial land use.Optimizing the technology and encouraging the development of green industries can help reduce environmental pollution and promote sustainable urban development.
文摘The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.
文摘This paper describes the relation and difference of "emission up to standards" and "total quantity control" ofmain atmospheric pollutants, as well as their legal status. It points out that the total quantity control is a good approachto solve a problem that environmental quality do not yet reach the requirements in an area where emission concentrationhas came up to standards, or to solve a problem that the interregional transportation of pollutants (e. g. acid rain) arises.And further, it put forward five proposals for the total quantity control.[
文摘A detailed chemical mechanism to describe the combustion of natural gas in internal combustion (IC) engine has been developed,which is consisting of 233 reversible reactions and 79 species.This mechanism accounts for the oxidation of methane,ethane,propane and nitrogen.It has been tested using IC engine model of CHEMKIN 4.1.1 and experimental measurements.The performance of the proposed mechanism was evaluated at various equivalence ratios (φ=0.6 to φ=1.3),initial reactor conditions (Tini=500 to 3500 ℃; Pini=1.0 to 10 atm) and engine speed (2000-7000 rpm).The proposed kinetic mechanism shows good concordances with GRI3.0 mechanism especially in the prediction of temperature,pressure and major product species (H2O,CO2) profiles at stoichiometric conditions (φ=1.0).The experimental results of measured cylinder pressure,species fractions were also in agreement with simulation results derived from the proposed kinetic mechanism.The proposed mechanism successfully predicts the formation of gaseous pollutants (CO,NO,NO2,NH3) in the engine exhaust.Although there are some discrepancies among each simulation profile,the proposed detailed mechanism is good to represent the combustion of natural gas in IC engine.