期刊文献+
共找到4,051篇文章
< 1 2 203 >
每页显示 20 50 100
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
1
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene poly(ethylene oxide) Glass fiber cloth All-solid-state Li metal Battery
下载PDF
Laminar Composite Solid Electrolyte with Poly(Ethylene Oxide)-Threaded Metal-Organic Framework Nanosheets for High-Performance All-Solid-State Lithium Battery
2
作者 Na Peng Weijie Kou +3 位作者 Wenjia Wu Shiyuan Guo Yan Wang Jingtao Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期264-273,共10页
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el... Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes. 展开更多
关键词 all-solid-state lithium battery ion conduction laminar composite solid electrolyte poly(ethylene oxide)-threaded metal-organic framework nanosheet structural stability
下载PDF
Poly(ionic liquid)-crosslinked graphene oxide/carbon nanotube membranes as efficient solar steam generators 被引量:2
3
作者 Jiangjin Han Zhiyue Dong +2 位作者 Liang Hao Jiang Gong Qiang Zhao 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期151-162,共12页
Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination... Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination. 展开更多
关键词 Solar energy Graphene oxide poly(ionic liquid)s Solar steam generation Wastewater treatment
下载PDF
Advances in high carbon dioxide separation performance of poly(ethylene oxide)-based membranes 被引量:1
4
作者 Samaneh Bandehali Abdolreza Moghadassi +3 位作者 Fahime Parvizian Sayed Mohsen Hosseini Takeshi Matsuura Ezatollah Joudaki 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期30-52,I0002,共24页
Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,t... Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased. 展开更多
关键词 Membrane gas separation Molecular design poly(ethylene oxide) CO2/CH4 separation
下载PDF
Enhanced Electrochemical Performance of Poly(ethylene oxide)Composite Polymer Electrolyte via Incorporating Lithiated Covalent Organic Framework 被引量:1
5
作者 Yuan Yao Yu Cao +4 位作者 Gang Li Cheng Liu Zhongyi Jiang Fusheng Pan Jie Sun 《Transactions of Tianjin University》 EI CAS 2022年第1期67-72,共6页
The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).L... The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).Li-ion can transfer along the PEO chain or across the layer of TpPa-SO_(3) Li within the nanochannels,resulting in a high Li-ion conductivity of3.01×10^(-4)S/cm at 60℃.When the CPE with 0.75 wt.%TpPa-SO_(3) Li was used in the LiFePO_(4)‖Li solid-state battery,the cell delivered a stable capacity of 125 mA·h/g after 250 cycles at 0.5 C,60℃.In comparison,the cell using the CPE without TpPa-SO_(3) Li exhibited a capacity of only 118 mA·h/g. 展开更多
关键词 Lithiated covalent organic framework Composite polymer electrolytes poly(ethylene oxide) Solid-state lithium-ion batteries
下载PDF
SYNTHESIS AND CHARACTERIZATION OF AMPHIPHILIC GRAFT COPOLYMER CONTAINING MICROPHASE SEPARATED AND LONG POLY(ETHYLENE OXIDE) SIDE CHAIN STRUCTURES 被引量:4
6
作者 邱永兴 俞小洁 +1 位作者 封麟先 杨士林 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1993年第1期67-75,共9页
Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (e... Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy. 展开更多
关键词 PEO AIBN SIDE CHAIN STRUCTURES SYNTHESIS AND CHARACTERIZATION OF AMPHIPHILIC GRAFT COpolyMER CONTAINING MICROPHASE SEPARATED AND LONG poly ethylene oxide PS
下载PDF
RANDOM COPOLYMER OF PROPYLENE OXIDE AND ETHYLENE OXIDE PREPARED BY DOUBLE METAL CYANIDE COMPLEX CATALYST 被引量:2
7
作者 Yi-jun Huang Guo-rong Qi +1 位作者 Guan-xi Chen Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027,China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第5期453-459,共7页
Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H... Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H-1-NMR analysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecular weight copolymers with various EO content were obtained and their values of molecular weight distribution (MWD) fell in the range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO+PO to initiator moles used, The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition. 展开更多
关键词 propylene oxide ethylene oxide double metal cyanide complex
下载PDF
RING OPENING COPOLYMERIZATION OF SUCCINIC ANHYDRIDE-ETHYLENE OXIDE BY Al(Ⅲ) ORGANOMETALLIC CATALYSTS 被引量:2
8
作者 陈仙海 张一烽 沈之荃 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1997年第3期262-272,共11页
Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ ... Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition. 展开更多
关键词 Succinic anhydride ethylene oxide Ring opening copolymerization Aluminum organometallic catalyst Biodegradable polymer
下载PDF
Study of Thermal,Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol)Blend Bioplastics
9
作者 Yodthong Baimark Theeraphol Phromsopha 《Journal of Renewable Materials》 SCIE EI 2023年第4期1881-1894,共14页
A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applicatio... A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applications.In this work,a PEG was incorporated into block copolymer as a plasticizer by solvent casting.PLLA-PEG-PLLA/PEG blends with different blend ratios were prepared,and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends.The results indicated that the PEG was an effective plasticizer for the block copolymer.The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices.The PEG was completely miscible when blended with block copolymer and it improved thermal stability of the block copolymer matrix but not of the PLLA matrix.Film extensibility of PLLA-PEG-PLLA/PEG blends steadily increased as the PEG ratio increased.These non-toxic and highly flexible PLLA-PEG-PLLA/PEG bioplastics are promising candidates for several applications such as biomedical devices,tissue scaffolds and packaging materials. 展开更多
关键词 poly(lactic acid) poly(ethylene glycol) polymer blends phase morphology thermal stability
下载PDF
Simultaneous generation of electricity, ethylene and decomposition of nitrous oxide via protonic ceramic fuel cell membrane reactor
10
作者 Song Lei Ao Wang +3 位作者 Guowei Weng Ying Wu Jian Xue Haihui Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期359-368,I0010,共11页
Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of... Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of ethane(NDE)to ethylene,is an emerging and promising route,promoting the transformation of the ethylene industry from energy-intensive steam cracking process to new electrochemical membrane reactor technology.In this work,the NDE reaction is incorporated into a BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)electrolyte-supported protonic ceramic fuel cell membrane reactor to co-generate electricity and ethylene,utilizing the Nb and Cu doped perovskite oxide Pr_(0.6)Sr_(0.4)Fe_(0.8)Nb_(0.1)Cu_(0.1)O_(3-δ)(PSFNCu)as anode catalytic layer.Due to the doping of Nb and Cu,PSFNCu was endowed with high reduction tolerance and rich oxygen vacancies,showing excellent NDE catalytic performance.The maximum power density of the assembled reactor reaches 200 mW cm^(-2)at 750℃,with high ethane conversion(44.9%)and ethylene selectivity(92.7%).Moreover,the nitrous oxide decomposition was first coupled in the protonic ceramic fuel cell membrane reactor to consume the permeated protons.As a result,the generation of electricity,ethylene and decomposition of nitrous oxide can be simultaneously obtained by a single reactor.Specifically,the maximum power density of the cell reaches 208 mW cm^(-2)at 750℃,with high ethane conversion(45.2%),ethylene selectivity(92.5%),and nitrous oxide conversion(19,0%).This multi-win technology is promising for not only the production of chemicals and energy but also greenhouse gas reduction. 展开更多
关键词 Nonoxidative dehydrogenation of ethane ethylene Nitrous oxide decomposition Protonic ceramic fuel cell membrane reactor Perovskite oxide
下载PDF
Analysis of residual crosslinking agent content in UV cross-linked poly(ethylene oxide) hydrogels for dermatological application by gas chromatography 被引量:1
11
作者 Rachel Shet Hui Wong Mark Ashton Kalliopi Dodou 《Journal of Pharmaceutical Analysis》 SCIE CAS 2016年第5期307-312,共6页
Acrylates have been widely used in the synthesis of pharmaceutical polymers. The quantitation of residual acrylate monomers is vital as they are strong irritants and allergens, but after polymerization, are relatively... Acrylates have been widely used in the synthesis of pharmaceutical polymers. The quantitation of residual acrylate monomers is vital as they are strong irritants and allergens, but after polymerization, are relatively inert, causing no irritation and allergies. Poly(ethylene oxide)(PEO) hydrogels were prepared using pentaerythritol tetra-acrylate(PETRA) as UV crosslinking agent. A simple, accurate, and robust quantitation method was developed based on gas chromatographic techniques(GC), which is suitable for routine analysis of residual PETRA monomers in these hydrogels. Unreacted PETRA was initially identified using gas chromatography–mass spectrometry(GC–MS). The quantitation of analyte was performed and validated using gas chromatography equipped with a flame ionization detector(GC–FID). A linear relationship was obtained over the range of 0.0002%–0.0450%(m/m) with a correlation coefficient(r2)greater than 0.99. The recovery( 4 90%), intra-day precision(%RSD o 0.67), inter-day precision(%RSD o2.5%), and robustness(%RSD o1.62%) of the method were within the acceptable values. The limit of detection(LOD) and limit of quantitation(LOQ) were 0.0001%(m/m) and 0.0002%(m/m), respectively.This assay provides a simple and quick way of screening for residual acrylate monomer in hydrogels. 展开更多
关键词 poly(ethylene oxide) (PEO) RESIDUAL MONOMER HydrogelGas chromatography–mass spectrometry (GC–MS) Gas chromatography–flame ionization detection (GC–FID)
下载PDF
Polyvinyl acetate/poly(amide-12-b-ethylene oxide) blend membranes for carbon dioxide separation 被引量:1
12
作者 Shichao Feng Jizhong Ren +3 位作者 Hui Li Kaisheng Hua Xinxue Li Maicun Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第6期837-844,共8页
In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on ... In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content. 展开更多
关键词 polyvinyl acetate poly(amide-12-b-ethylene oxide) blend membrane carbon dioxide separation
下载PDF
Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation 被引量:3
13
作者 Yongtao Qiu Jizhong Ren +2 位作者 Dan Zhao Hui Li Maicun Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期122-130,共9页
Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting a... Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect. 展开更多
关键词 poly(amide-6-b-ethylene oxide Ionic liquid Carbon dioxide separation Blend membrane
下载PDF
Preparation and Thermo-Responsive Properties of Poly(Oligo(Ethylene Glycol)Methacrylate)Copolymers with Hydroxy-Terminated Side Chain
14
作者 陈杨轶 苏桐 +3 位作者 周仕航 谢晨迪 李京芝 邱夷平 《Journal of Donghua University(English Edition)》 CAS 2023年第6期610-621,共12页
Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylen... Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylene glycol methacrylate(P(EO2-co-EG4/5))are synthesized via atom transfer radical polymerization(ATRP).The successful synthesis and the narrow polydispersity index(PDI)of two copolymers are indicated by 1H nuclear magnetic resonance(1H-NMR)and gel permeation chromatography(GPC)analyses.The transition behaviors of polymers in the aqueous solution are demonstrated by changes in turbidity and particle sizes.The transition behavior of P(EO2-co-EG4/5)is found to be milder than that of P(EO2-co-EO4/5).Moreover,the presence of hydrogen bonds without thermo-responsive properties established by hydroxyl groups in the end-side chain of P(EO_(2)-co-EG_(4/5))hinders the dehydration at the transition temperature(TT).Attenuated total reflection Fourier transform infrared spectrometry(ATR-FTIR)analysis along with contact angle measurements reveals that both P(EO_(2)-co-EO_(4/5))and P(EO_(2)-co-EG_(4/5))films undergo phase transitions from hydrophilicity to hydrophobicity above TT.By examining the swelling and collapse behaviors of the polymer films during phase transitions,it can be concluded that the end hydroxyl groups may establish hydrogen bonds with neighboring ether groups within the films,which remain intact throughout the phase transition process due to their strong bonding interactions.This leads to an increase in steric hindrance within swollen films thereby impeding dehydration processes and inducing hysteresis during phase transitions. 展开更多
关键词 thermo-responsive property poly(oligo(ethylene glycol)methacrylate) polyethylene glycol methacrylate hydroxy-terminated side chain contact angle phase transition
下载PDF
Permeation Characteristics of Light Hydrocarbons Through Poly(amide-6-β-ethylene oxide) Multilayer Composite Membranes 被引量:1
15
作者 任晓灵 任吉中 +1 位作者 李晖 邓麦村 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第3期232-237,共6页
In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation b... In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease. 展开更多
关键词 多层复合膜 环氧乙烷 渗透特性 酰胺基 轻烃 PDMS复合膜 聚二甲基硅氧烷 气体渗透率
下载PDF
High-efficiency acetaldehyde removal during solid-state polycondensation of poly(ethylene terephthalate) assisted by supercritical carbon dioxide 被引量:2
16
作者 Zhenhao Xi Tian Liu +3 位作者 Wei Si Fenglei Bi Zhimei Xu Ling Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第6期1285-1291,共7页
The concentration of acetaldehyde(AA) is the main quality index of poly(ethylene terephthalate)(PET) used in food and drink packaging.A new method for AA removal has been developed by using supercritical carbon dioxid... The concentration of acetaldehyde(AA) is the main quality index of poly(ethylene terephthalate)(PET) used in food and drink packaging.A new method for AA removal has been developed by using supercritical carbon dioxide(sc CO2) during the solid-state polycondensation of PET.The influence factors of AA removal including the temperature,pressure,reaction time and the size of pre-polymer particles are systematically studied in this work.The results indicate that it is a highly efficient way to obtain high molecular weight PET with relative low concentration of AA.Correspondingly,the polymerization degree of PET could increase from 27.9 to 85.6 while the concentration of AA reduces from 0.229 × 10^(-6) to 0.055 × 10^(-6) under the optimal operation conditions of 230 °C,8 MPa and size of 0.30–0.45 mm.Thermodynamic performance tests show the increasing extent of PET crystallinity due to the fact that the plasticization of sc CO_2 is not obvious with extended reaction time,therefore the increasing crystallinity has no significant influence on AA removal.SEM observations reveal that the effects of sc CO_(2-) induced plasticization and swelling on PET increase significantly with the decrease of prepolymer size,and the surface of PET becomes more loose and porous in favor of the AA removal. 展开更多
关键词 poly 二氧化碳 移动 固态 乙醛 乙烯 影响因素 反应时间
下载PDF
CONDUCTING BLENDS OF POLY (2-VINYL PYRIDINE) AND POLYETHYLENE OXIDE WITH HIGH MOLECULAR WEIGHT
17
作者 崔敏慧 过俊石 +1 位作者 谢洪泉 陈栋华 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1997年第1期24-33,共10页
Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were ... Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were investigated. Effects of LiClO4 and TCNQ concentrations on the conductivity of PEO/P2VP/LiClO4 or TCNQ blend were studied. The ionic conductivity of PEO/P2VP/LiClO4 blend increases with increasing PEO content. At a Li/ethylene bride molar ratio of 0.10 and a TCNQ/2-vinyl pyridine molar ratio of 0.5, the mixed conductivity of PEO/P2VP/LiClO4/TCNQ is higher than the total of ionic conductivity of PEO/P2VP/LiClO4 and electronic conductivity of PEO/P2VP/TCNQ when the weight ratio of PEO and P2VP is 6/4 or 5/5. Scanning electron microscopy (SEM) on the broken cross-section of the PEO/P2VP/LiClO4 blend and differential scanning calorimetry (DSC) results show that LiClO4 could act as a compatibilizer in the blend. 展开更多
关键词 poly(ethylene oxide) poly(2-vinyl pyridine) mixed (ionic-electronic) conductivity lithium perchlorate compatibilizing effect
下载PDF
Electrical Percolation of Carbon Black Filled Poly (ethylene oxide)Composites in Relation to the Matrix Morphology
18
作者 GenShuiCHENG JiWenHU +3 位作者 MingQiuZHANG MingWeiLI DingShuXIAO MinZhiRONG 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第12期1501-1504,共4页
The present work studies the electrical conduction performance of carbon black (CB)filled poly(ethylene oxide) (PEO) composites. The addition of CB leads to reduced matrixcrystallinity as the fillers which are partly ... The present work studies the electrical conduction performance of carbon black (CB)filled poly(ethylene oxide) (PEO) composites. The addition of CB leads to reduced matrixcrystallinity as the fillers which are partly situated inside the lamellae and hinder the growth of PEOcrystallites. As a result, the electrical percolation behavior is related with the matrix morphology. 展开更多
关键词 poly(ethylene oxide) carbon black COMPOSITES PERCOLATION crystalline morphology
下载PDF
ULTRASONIC BEHAVIOR OF EPOXY RESINS/POLY (ETHYLENE OXIDE) BLENDS CURED WITH PHTHALIC ANHYDRIDE
19
作者 郑思珣 王海千 +4 位作者 罗筱烈 张乃斌 马德柱 朱长飞 胡建恺 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1995年第1期20-27,共8页
By means of ultrasonic attenuation apparatus, the ultrasonic velocity and attenuation ofanhydride-cured epoxy resins (EP)/poly (ethylene oxide) (PEO) blends were measured on thebasis of pulse-echo method. It was found... By means of ultrasonic attenuation apparatus, the ultrasonic velocity and attenuation ofanhydride-cured epoxy resins (EP)/poly (ethylene oxide) (PEO) blends were measured on thebasis of pulse-echo method. It was found that the sonic velocity of the blends decreased as thetemperature increased, but attenuation coefficient increased and possessed a peak value. Largervelocity and smaller attenuation coefficient(α)can be obtained from perfect crosslinking networkstructures of pure DGEBA cured with phthalic anhydride(PA). As for cured DGEBA/PEO blendsystems,sonic velocity decreased as a function of PEO concentration,but attenuation coefficient(α) increased. 展开更多
关键词 Pulse-echo method Ultrasonic velocity Attenuation coefficient (α) Epoxy resins /poly (ethylene oxide)blends Crosslinking network
下载PDF
EFFECTS OF ω-ACRYLOYL POLY (ETHYLENE OXIDE) MACROMONOMER ON EMULSIFIER-FREE EMULSI0N COPOLYMERIZATION OF METHYL METHACRYLATE AND n-BUTYL ACRYLATE
20
作者 郭天瑛 宋谋道 +2 位作者 周庆业 郝广杰 张邦华 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1998年第4期351-355,共5页
Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macro-monomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxidewith diphenyl methyl potassium as the initiator and acryloyl... Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macro-monomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxidewith diphenyl methyl potassium as the initiator and acryloyl chloride as the reaction termi-nating agent. The polymer was characterized by FTIR and SEC. The emulsifier-free emul-sion polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) containingvarious concentrations of PEO-A was studied. In all cases stable emulsion coplymerizationsof MMA and BA were obtained. The stabilizing effect was found to be dependent on themolecular weight and the feed amount of the macromonomer. 展开更多
关键词 MACROMONOMER ω-Acryloyl poly(ethylene oxide) Emulsifier-free emulsion copolymerization Methyl methacrylate-n-butyl acrylate copolymer
下载PDF
上一页 1 2 203 下一页 到第
使用帮助 返回顶部