期刊文献+
共找到2,508篇文章
< 1 2 126 >
每页显示 20 50 100
From“stars”to nano:Porous poly(ethylene glycol)hydrogel films and nanosheets as a versatile platform for sensing and nanofabrication
1
作者 Michael Zharnikov 《Nano Research》 SCIE EI CSCD 2024年第11期10069-10082,共14页
The use of bioinert materials is crucially important for medicine and bioengineering.The most popular systems in this context are oligo-and poly(ethylene glycols)(OEGs and PEGs),applied generally in different forms as... The use of bioinert materials is crucially important for medicine and bioengineering.The most popular systems in this context are oligo-and poly(ethylene glycols)(OEGs and PEGs),applied generally in different forms as bulk materials,thin films,and functional molecular groups.Here,I review the fabrication,properties,and applications of porous hydrogel PEG films(PHFs)and nanosheets(PHNs)formed by thermally activated crosslinking of amino-and epoxy-terminated,star-branched PEG oligomers with variable molecular weight.These systems possess various useful characteristics,including tunable thickness and porosity,hydrogel properties,bioinertness,robustness,and extreme elasticity.They can serve as the basis for composite materials,advanced nanofabrication,and lithography,bioinert supports for high-resolution transmission electron microscopy,susceptible elements in micro-electromechanical systems,and basic building blocks of temperature,humidity,chemical,and biological sensors.Representative examples of the respective applications are provided.Even though these examples span a broad field-from nanoengineering to biosensing,the applications of the PHFs and PHNs are certainly not limited to these cases but can be specifically adapted and extended to other fields,such as tissue engineering and drug delivery,relying on versatility and tunability of these systems. 展开更多
关键词 poly(ethylene glycol) hydrogel films bioinertness NANOSHEETS sensors composite materials
原文传递
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
2
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene poly(ethylene oxide) Glass fiber cloth All-solid-state Li metal Battery
下载PDF
Laminar Composite Solid Electrolyte with Poly(Ethylene Oxide)-Threaded Metal-Organic Framework Nanosheets for High-Performance All-Solid-State Lithium Battery 被引量:1
3
作者 Na Peng Weijie Kou +3 位作者 Wenjia Wu Shiyuan Guo Yan Wang Jingtao Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期264-273,共10页
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el... Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes. 展开更多
关键词 all-solid-state lithium battery ion conduction laminar composite solid electrolyte poly(ethylene oxide)-threaded metal-organic framework nanosheet structural stability
下载PDF
Miscibility, Crystallization, and Rheological Behavior of Solution Casting Poly(3-hydroxybutyrate)/poly(ethylene succinate) Blends Probed by Differential Scanning Calorimetry, Rheology, and Optical Microscope Techniques
4
作者 孙伟华 乔晓平 +1 位作者 曹启坤 刘结平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期107-112,I0002,共7页
The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and opti... The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybuty- rate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed. 展开更多
关键词 MISCIBILITY poly(3-hydroxybutyrate)/polyethylene succinate blend Phase behavior CRYSTALLIZATION
下载PDF
Stable Cycling of All-Solid-State Lithium Metal Batteries Enabled by Salt Engineering of PEO-Based Polymer Electrolytes 被引量:1
5
作者 Lujuan Liu Tong Wang +6 位作者 Li Sun Tinglu Song Hao Yan Chunli Li Daobin Mu Jincheng Zheng Yang Dai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期67-74,共8页
Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi... Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃. 展开更多
关键词 all-solid-state battery high voltage li-ion conductivity molecular interaction poly(ethylene oxide)
下载PDF
Study of Thermal,Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol)Blend Bioplastics
6
作者 Yodthong Baimark Theeraphol Phromsopha 《Journal of Renewable Materials》 SCIE EI 2023年第4期1881-1894,共14页
A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applicatio... A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applications.In this work,a PEG was incorporated into block copolymer as a plasticizer by solvent casting.PLLA-PEG-PLLA/PEG blends with different blend ratios were prepared,and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends.The results indicated that the PEG was an effective plasticizer for the block copolymer.The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices.The PEG was completely miscible when blended with block copolymer and it improved thermal stability of the block copolymer matrix but not of the PLLA matrix.Film extensibility of PLLA-PEG-PLLA/PEG blends steadily increased as the PEG ratio increased.These non-toxic and highly flexible PLLA-PEG-PLLA/PEG bioplastics are promising candidates for several applications such as biomedical devices,tissue scaffolds and packaging materials. 展开更多
关键词 poly(lactic acid) poly(ethylene glycol) polymer blends phase morphology thermal stability
下载PDF
Preparation and Thermo-Responsive Properties of Poly(Oligo(Ethylene Glycol)Methacrylate)Copolymers with Hydroxy-Terminated Side Chain
7
作者 陈杨轶 苏桐 +3 位作者 周仕航 谢晨迪 李京芝 邱夷平 《Journal of Donghua University(English Edition)》 CAS 2023年第6期610-621,共12页
Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylen... Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylene glycol methacrylate(P(EO2-co-EG4/5))are synthesized via atom transfer radical polymerization(ATRP).The successful synthesis and the narrow polydispersity index(PDI)of two copolymers are indicated by 1H nuclear magnetic resonance(1H-NMR)and gel permeation chromatography(GPC)analyses.The transition behaviors of polymers in the aqueous solution are demonstrated by changes in turbidity and particle sizes.The transition behavior of P(EO2-co-EG4/5)is found to be milder than that of P(EO2-co-EO4/5).Moreover,the presence of hydrogen bonds without thermo-responsive properties established by hydroxyl groups in the end-side chain of P(EO_(2)-co-EG_(4/5))hinders the dehydration at the transition temperature(TT).Attenuated total reflection Fourier transform infrared spectrometry(ATR-FTIR)analysis along with contact angle measurements reveals that both P(EO_(2)-co-EO_(4/5))and P(EO_(2)-co-EG_(4/5))films undergo phase transitions from hydrophilicity to hydrophobicity above TT.By examining the swelling and collapse behaviors of the polymer films during phase transitions,it can be concluded that the end hydroxyl groups may establish hydrogen bonds with neighboring ether groups within the films,which remain intact throughout the phase transition process due to their strong bonding interactions.This leads to an increase in steric hindrance within swollen films thereby impeding dehydration processes and inducing hysteresis during phase transitions. 展开更多
关键词 thermo-responsive property poly(oligo(ethylene glycol)methacrylate) polyethylene glycol methacrylate hydroxy-terminated side chain contact angle phase transition
下载PDF
Stable Cycling of All-Solid-State Lithium Batteries Enabled by Cyano-Molecular Diamond Improved Polymer Electrolytes
8
作者 Yang Dai Mengbing Zhuang +5 位作者 Yi-Xiao Deng Yuan Liao Jian Gu Tinglu Song Hao Yan Jin-Cheng Zheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期561-575,共15页
The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective... The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective additive 1-adaman-tanecarbonitrile,which con-tributes to the excellent per-formance of the poly(ethylene oxide)-based electrolytes.Owing to the strong interaction of the 1-Adamantanecarboni-trile to the polymer matrix and anions,the coordination of the Li^(+)-EO is weakened,and the binding effect of anions is strengthened,thereby improving the Li^(+)conductivity and the electrochemical stability.The diamond building block on the surface of the lithium anode can sup-press the growth of lithium dendrites.Importantly,the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface,which contributes to the interfacial stability(especially at high voltages)and protects the electrodes,enabling all-solid-state batteries to cycle at high voltages for long periods of time.Therefore,the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h.1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li all-solid-state batteries achieved stable cycles for 1000 times,with capacity retention rates reaching 85%and 80%,respectively. 展开更多
关键词 1-Adamantanecarbonitrile(ADCN) poly(ethylene oxide) All-solid-state batteries Interfacial stability High voltage
下载PDF
Antifouling Properties of Electrospun Polymeric Coatings Induced by Controlled Surface Morphology
9
作者 Fabio L.Favrin Lorenzo Zavagna +7 位作者 Matteo Sestini Semih Esin Bahareh Azimi Massimiliano Labardi Mario Milazzo Giuseppe Gallone Giovanna Batoni Serena Danti 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期409-419,共11页
Nosocomial infections affect implanted medical devices and greatly challenge their functional outcomes,becoming sometimes life threatening for the patients.Therefore,aggressive antibiotic therapies are administered,wh... Nosocomial infections affect implanted medical devices and greatly challenge their functional outcomes,becoming sometimes life threatening for the patients.Therefore,aggressive antibiotic therapies are administered,which often require the use of last-resort drugs,if the infection is caused by multi-drug-resistant bacteria.Reducing the risk of bacterial contamination of medical devices in the hospitals has thus become an emerging issue.Promising routes to control these infections are based on materials provided with intrinsic bactericidal properties(i.e.,chemical action)and on the design of surface coatings able to limit bacteria adhesion and fouling phenomena(i.e.,physical action),thus preventing bacterial biofilm formation.Here,we report the development and validation of coatings made of layer-by-layer deposition of electrospun poly(vinylidene fluoride-co-trifluoro ethylene)P(VDF-TrFE)fibers with controlled orientations,which ultimately gave rise to antifouling surfaces.The obtained 10-layer surface morphology with 90°orientation fibers was able to efficiently prevent the adhesion of bacteria,by establishing a superhydrophobic-like behavior compatible with the Cassie-Baxter regimen.Moreover,the results highlighted that surface wettability and bacteria adhesion could be controlled using fibers with diameter comparable to bacteria size(i.e.,achievable via electrospinning process),by tuning the intra-fiber spacing,with relevant implications in the future design of biomedical surface coatings. 展开更多
关键词 additive manufacturing Escherichia coli fibers poly(vinylidene fluoride-cotrifluoro ethylene)P(VDF-TrFE) Pseudomonas aeruginosa SUPERHYDROPHOBIC
下载PDF
Controlled delivery of ibuprofen from poly(vinyl alcohol)-poly(ethylene glycol) interpenetrating polymeric network hydrogels 被引量:4
10
作者 Subhraseema Das Usharani Subuddhi 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2019年第2期108-116,共9页
Hydrogels composed of poly(vinyl alcohol)(PVA) and poly(ethylene glycol)(PEG) were synthesized using glutaraldehyde as crosslinker and investigated for controlled delivery of the common anti-inflammatory drug, ibuprof... Hydrogels composed of poly(vinyl alcohol)(PVA) and poly(ethylene glycol)(PEG) were synthesized using glutaraldehyde as crosslinker and investigated for controlled delivery of the common anti-inflammatory drug, ibuprofen(IBF). To regulate the drug delivery, solid inclusion complexes(ICs) of IBF in β–cyclodextrin(β–CD) were prepared and added to the hydrogels. The ICs were prepared by the microwave irradiation method, which is more environmentally benign. The formation of IC was confirmed by various analytical techniques and the synthesized hydrogels were also characterized. Controlled release of drug was achieved from the hydrogels containing the ICs in comparison to the rapid release from hydrogels containing free IBF.The preliminary kinetic analysis emphasized the crucial role of β–CD in the drug release process that influences the polymer relaxation, thereby leading to prolonged release. The cytotoxicity assay validated the hydrogels as non-toxic in nature and hence can be utilized for controlled delivery of IBF. 展开更多
关键词 HYDROGELS poly(vinyl alcohol) poly(ethylene glycol) IBUPROFEN Controlled delivery systems
下载PDF
Studies on the Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate): I. Catalytic Activity of Metal Acetate in Transesterification of Ethylene Carbonate with Dimethyl Terephthalate 被引量:4
11
作者 Dan ZHANG Shu Yong JLA +3 位作者 Yue WANG Jie YAO Yi ZENG Gong Ying WANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第12期1607-1610,共4页
A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithi... A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process. 展开更多
关键词 Metal acetate ethylene carbonate dimethyl terephthalate dimethyl Carbonate polyethylene terephthalate).
下载PDF
SURFACE MODIFICATION OF BLEND FILMS COMPOSED OF SILK FIBROIN AND POLY(ETHYLENE GLYCOL) MACROMER AND THEIR IN VITRO ANTITHROMBOGENICITY 被引量:4
12
作者 王松 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2004年第4期399-403,共5页
In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were... In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were then modified by SO2 gas plasma treatment. ATR-FITR and XPS were used to analyze the chemical change which had occurred on the film's surface. When the content of sulfur on the surface of blend films surpasses 1.59%, the antithrombogenicity of plasma treated films increases remarkably due to surface sulfonation. This result implies that SF with blend of PEGM after SO2 plasma treatment have potential use for making blood-contacting biomaterials. 展开更多
关键词 Silk fibroin poly(ethylene glycol) macromer PLASMA ANTITHROMBOGENICITY
下载PDF
Characterization and Properties of Electroless Nickel Plated Poly (ethylene terephthalate) Nonwoven Fabric Enhanced by Dielectric Barrier Discharge Plasma Pretreatment 被引量:4
13
作者 耿亚敏 卢灿辉 +1 位作者 梁梅 张伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第6期715-722,共8页
In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of po... In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD airplasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties. 展开更多
关键词 dielectric barrier discharge plasma electroless nickel plating polyethylene terephthalate) (PET) surface properties
下载PDF
Poly(L-lactide)-Poly(ethylene glycol) Multiblock Copolymers: Synthesis and Properties 被引量:2
14
作者 Wei Jun LUO Su Ming LI +1 位作者 Jian Zhong BEI Shen Guo WANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第1期33-36,共4页
Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as ... Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components. 展开更多
关键词 poly (L-lactide) poly(ethylene glycol) BIODEGRADABILITY multiblock copolymer MISCIBILITY crystallinity hydrophilicity.
下载PDF
THE STRUCTURE AND PROPERTIES OF CHITOSAN/POLYETHYLENE GLYCOL/SILICA TERNARY HYBRID ORGANIC-INORGANIC FILMS 被引量:2
15
作者 宋锐 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2008年第5期621-630,共10页
The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized ... The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized by attenuation total reflection-infrared spectroscopy(ATR-IR),X-ray diffraction(XRD),optical microscopy(OM)and differential scanning calorimetry(DSC).The results showed that the addition of silica affected not only the distribution and crystallinity of PEG on the sample surface,but also the pha... 展开更多
关键词 CHITOSAN polyethylene glycol) SILICA Annealing.
下载PDF
RING OPENING COPOLYMERIZATION OF SUCCINIC ANHYDRIDE-ETHYLENE OXIDE BY Al(Ⅲ) ORGANOMETALLIC CATALYSTS 被引量:2
16
作者 陈仙海 张一烽 沈之荃 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1997年第3期262-272,共11页
Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ ... Ring opening copolymerization of succinic anhydride (SA) with ethylene oxide (EO)was successfully carried out by using a series of aluminum-based catalyst in 1,4-dioxane at62±2℃. The results showed that in-situ AlR_3-H_2O (R=ethyl, iso-butyl) catalysts gavehigher molecular weight (M_w~10~4), while Al(OR)_3 catalysts gave the higher alternatingcopolymer structure with slightly lower molecular weight. The in-situ AlR_3-H_2O systemshave been evaluated in more detail for the reaction which showed the optimum H_2O/Almolar ratio to be 0.5. The copolymers with different composition (F_(SA)/F_(EO)= 36/64to 45/55 mol/mol) were synthesized by using different monomer feed ratio. The melt-ing point (T_m), glass transition temperature (T_g) and enthalpy of fusion (ΔH_f) of thesecopolymers are depended on the copolymer composition and in the range of 87~102℃,-12~-18℃, and 37~66J/g, respectively. The second heating scan of DSC also in-dicated that the higher alternating copolymer was more easily recrystallized. The onsetdecomposition temperature was more than 300℃ under nitrogen and influenced by thecopolymer composition. 展开更多
关键词 Succinic anhydride ethylene oxide Ring opening copolymerization Aluminum organometallic catalyst Biodegradable polymer
下载PDF
Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) synthesized by ATRP 被引量:2
17
作者 Xin De Tang Xiao Chao Liang Nian Feng Han 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第11期1353-1356,共4页
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide), PEG-b-(PNIPAM)2, were successfully synthesized through atom transfer radical polymerization (ATRP). A difunctional macr... Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide), PEG-b-(PNIPAM)2, were successfully synthesized through atom transfer radical polymerization (ATRP). A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the ATRP ofN-isopropylacrylamide (NIPAM) at 30℃ with CuCl/Me6TREN as a catalyst system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography (GPC) and ^1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI 〈 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry (DSC). As a result, the phase transition temperature of PEG45-b-(PNIPAM55)2 is higher than that of PNIPAM, however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular composition and architecture on the phase transition. 展开更多
关键词 Y-shaped Block copolymer polyethylene glycol) poly(N-isopropylacrylamide) Atom transfer radical polymerization (ATRP)
下载PDF
In-situ Polymerization-modification Process and Foaming of Poly(ethylene terephthalate) 被引量:4
18
作者 仲华 奚桢浩 +1 位作者 刘涛 赵玲 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第12期1410-1418,共9页
Most of traditional linear poly(ethylene terephthalate)(PET)resins of relatively low molecular mass and narrow molecular mass distribution have low melt strength at foaming temperatures,which are not enough to support... Most of traditional linear poly(ethylene terephthalate)(PET)resins of relatively low molecular mass and narrow molecular mass distribution have low melt strength at foaming temperatures,which are not enough to support and keep cells.An in-situ polymerization-modification process with esterification and polycondensation stages was performed in a 2 L batch stirred reactor using pyromellitic dianhydride(PMDA)or pentaerythritol(PENTA)as modifying monomers to obtain PETs with high melt strength.The influence of amounts of modifying monomers on the properties of modified PET was investigated.It was found that the selected modifying monomers could effectively introduce branched structures into the modified PETs and improve their melt strength.With increasing the amount of the modifying monomer,the melt strength of the modified PET increased.But when the amount of PENTA reached 0.35%or PMDA reached 0.9%,crosslinking phenomenon was observed in the modified PET.Supercritical carbon dioxide(ScCO2)was employed as physical foaming agent to evaluate the foaming ability of modified PETs.The modified PETs had good foaming properties at 14 MPa of CO2pressure with foaming temperature ranging from 265°C to 280°C.SEM micrographs demonstrated that both modified PET foams had homogeneous cellular structures,with cell diameter ranging from 35μm to 49μm for PENTA modified PETs and38μm to 57μm for PMDA modified ones.Correspondingly,the cell density had a range of 3.5×107cells·cm 3to 7×106cells·cm 3for the former and 2.8×107cells·cm 3to 5.8×106cells·cm 3for the latter. 展开更多
关键词 polyethylene terephthalate) in-situ polymerization-modification supercritical carbon dioxide molten-state foaming
下载PDF
Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate) Using Alkali Metals as Catalysts 被引量:2
19
作者 张丹 王庆印 +3 位作者 姚洁 王越 曾毅 王公应 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期772-774,共3页
Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is ... Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%. 展开更多
关键词 ethylene carbonate dimethyl terephthalate dimethyl carbonate poly ethylene terephthalate) TRANSESTERIFICATION CATALYST
下载PDF
Flame Retardancy and Thermal Property of Poly (ethylene terephthalate)/Modified Cyclotriphosphazene Composites 被引量:2
20
作者 汪娇宁 苏兴勇 +4 位作者 雅兰 陈雯婷 陈飞 陈樱 毛志平 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期384-389,共6页
In this study,hexachlorocyclotriphosphazene( HCCP)modified by boric acid and 3-aminopropyltriethoxysilane( KH-550)in solvent diglyme( FR-HCCP) was used as the flame retardant for poly( ethylene terephthalate)( PET) co... In this study,hexachlorocyclotriphosphazene( HCCP)modified by boric acid and 3-aminopropyltriethoxysilane( KH-550)in solvent diglyme( FR-HCCP) was used as the flame retardant for poly( ethylene terephthalate)( PET) composites. The flame retardancy and thermal property of pure PET and flame-retarded PET composites were mainly investigated. The flame retardancy was investigated by limited oxygen index( LOI) and UL-94 vertical burning test. The results showed that the composites could achieved an increased UL-94 V-0 rating and LOI value 30. 2, when the content of FR-HCCP was just 1%. The pyrolysis-gas chromatography-mass spectrometry( Py-GC / MS) study demonstrated that introducing FR-HCCP into PET would prevent the polymer pyrolysis during heating. TGA analysis showed that the addition of FR-HCCP could improve the char formation of the system. Roman spectra showed the order degree of residue was increasing by adding the additive. The morphology and the chemical structure of the charred residue were detected by SEMand FTIR,respectively. Results demonstrated that a good barrier was formed by the char of the composite,which protected the inside of the composite during burning. 展开更多
关键词 boron-silicon polyPHOSPHAZENE flame retardant poly(ethylene terephthalate)(PET)
下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部