High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different tempera...High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.展开更多
Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS), then irradiated by Co γ-rays at 25℃. The effects of reaction 60...Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS), then irradiated by Co γ-rays at 25℃. The effects of reaction 60 time,absorbed dose, dose-rate, inhibitor and monomer concentration on the grafting yield were studied. Grafting yields of both AA and SSS onto FEP, respectively, increase with irradiation dose, but some saturation will appear at high dose and monomer concentration. The grafting yield increases with reaction time and then levels off. The graft- ing of SSS onto FEP is more difficult than the grafting of AA. The analysis of grafted membranes using DSC and FT-IR have been done.展开更多
Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in...Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgA1-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgA1-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems. In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10^- 3 S·m^-1 was achieved for the polymer electrolyte.展开更多
1, 2-Diliydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one(DHPZ) was sulfonated in concentrated Sulfuric acid. Poly(phthalazinone ether ketone) containing pendant sodium sulfonate group was synthesized from sulfonated and ...1, 2-Diliydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one(DHPZ) was sulfonated in concentrated Sulfuric acid. Poly(phthalazinone ether ketone) containing pendant sodium sulfonate group was synthesized from sulfonated and pure 1,2-dihydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one, and 4,4'-difluorodiphenylketone. The sulfonated monomer and sulfonated polymer were characterized with FT-IR and H-1-NMR.展开更多
A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein p...A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein poly(ether sulfone) (SPES-C, DS= 53.7%) is blended with the SPEEK matrix (DS= 55.1%, 61.7%) to prepare SPEEKJSPES-C blend membrane. The decrease in swelling degree and methanol permeability of the membrane is dose-dependent. Pure SPEEK (DS = 61.7%) membrane dissolves completely in water at 70℃, whereas the swelling degree of the SPEEK (DS = 61.7%)/SPES-C (40%, by mass) membrane is 29.7% at 80℃. From room temperature to 80℃, the methanol permeability of all SPEEK (DS = 55.1%)/SPES-C blend membranes is about one order of magnitude lower than that of Nafion 115. At higher temperature, the addition of SPES-C polymer increases the dimensional stability and greater proton conductivity can be achieved. The SPEEK (DS = 55.1%)/SPES-C (40%, by mass) membrane can withstand temperatures up to 150℃. The proton conductivity of SPEEK (DS = 55.1%)/SPES-C (30%, by mass) membrane approaches 0.16 S·cm^-1, matching that of Nafion 115 at 140℃ and 100% RH, while pure SPEEK (DS = 55.1%) membrane dissolves at 90℃. The SPEEK/SPES-C blend membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.展开更多
A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalize...A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS = 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80℃, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that ofNafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiO4-S (20%, by mass) membrane could withstand temperature up to 145℃, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion 1 15 membrane and reached 0.17 S·cm^-1, while pure SPEEK membrane dissolved at 90℃. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.展开更多
A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place ...A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place at the para position of the pendant phenyl rings because of the specially designed parent polymer. The position and degree of sulfonation were characterized by ^1H-NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N'-dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the films exhibited superior stability to oxidation. The proton conductivities of the films were comparable with Nation 117 under same conditions. The membrane electrode assembly (MEA) prepared with the asmade film (706 EW, 100 μm dry thickness) shows better cell performance than Nation 115-MEA in the whole current density range.展开更多
N,N'-Bis(3-hydroxyphenyl)-1,8,4,5-naphthalenetetracarboxylic bisimide was prepared from the reaction of 1,8,4,5-naphthalenetetrcarboxylic acid dianhydride and 2-aminophenol in N, N-dimethylformamide. Polymerization...N,N'-Bis(3-hydroxyphenyl)-1,8,4,5-naphthalenetetracarboxylic bisimide was prepared from the reaction of 1,8,4,5-naphthalenetetrcarboxylic acid dianhydride and 2-aminophenol in N, N-dimethylformamide. Polymerization of this bisimide with 4,4'-difluorodiphenylsulfone and disodium 3,3'-disulfonate4,4'-difluorodiphenylsulfone gave ion-exchange sulfonated poly(ether sulfone). The structure of the title compound was characterized with H-NMR and its polymer was characterized with FT-IR.展开更多
Disubstituted oxazoles were prepared conveniently by treatment of aromatic -methyl ketones and nitriles with poly[styrene(iodosodiacetate)] in one-pot process.
The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,...The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.展开更多
With the advent of plastics and the wide range of fillers that are available have made modifications as precise as the tailored resins themselves. To modify the properties of polymer either by using fillers or by prep...With the advent of plastics and the wide range of fillers that are available have made modifications as precise as the tailored resins themselves. To modify the properties of polymer either by using fillers or by preparation of polymer blends gives rise to new materials with tailored properties. More complex, three-component systems, obtained by the addition of polymeric modifier to polymer filled composites may be of interest. Use of Fly ash cenospheres is very attractive because it is inexpensive and its use can reduce the environmental pollution to a significant extent. In the present study, Poly (Methyl Methacrylate) (PMMA)-Fly ash cenospheres composites were prepared using extrusion followed by Injection molding. The effect of matrix modification with Methyl methacrylate– acrylonitrile -butadiene–styrene (MABS) on the performance of PMMA- Fly ash cenospheres compositions was also, studied. It was found that with the addition of Fly ash cenospheres particulate as filler in PMMA showed marginal reduction in Tensile Strength, % Elongation and Impact strength and improvement in Flexural Strength, Heat Deflection Temperature and Vicat Softening Point. Compared with PMMA-cenospheres composites, the notched Impact Strength of the PMMA/MABS/cenospheres composites showed marginal enhancement in values at higher loading of cenospheres. The optimum performances in mechanical and thermal properties were obtained when the ratio of MABS to cenospheres was 1:2.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
Two-dimensional nuclear overhauser enhancement (2D NOESY)measurements show that sodium dodecyl sulfonate SDSN molecules co-aggregate with poly-ethylene glycol PEG in their aqueous solution at a concentration range of ...Two-dimensional nuclear overhauser enhancement (2D NOESY)measurements show that sodium dodecyl sulfonate SDSN molecules co-aggregate with poly-ethylene glycol PEG in their aqueous solution at a concentration range of SDSN between the so-called co-aggregation concentration (cac) and the. Normal critical micellar concentration (cmc). SDSN micelles are formed when the cmc of SDSN is reached with PEG uniformly distributed in the interior.展开更多
Low-temperature plasma treatment was adopted to graft styrene onto polytetrafluo- roethylene (PTFE) powder, which is widely used in the fabrication of proton exchange membrane (PEM). The grafted PTFE powder was su...Low-temperature plasma treatment was adopted to graft styrene onto polytetrafluo- roethylene (PTFE) powder, which is widely used in the fabrication of proton exchange membrane (PEM). The grafted PTFE powder was sulfonated in chlorosulfonic acid and fabricated into a membrane, which was used as inexpensive PEM material for a proton exchange membrane fuel cell (PEMFC). Fourier transform infrared spectroscopy attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis were used to characterize the structure of the sulfonated PTFE powder. The results showed that all the PTFE powders were successfully grafted by nitrogen plasma and then sulfonated under such experimental conditions. A scanning electron microscopy (SEM) image indicated that the fabricated membrane exhibits flat morphology and homogenous structure. The ion exchange capacity (IEC) of this kind of PEM was also investigated.展开更多
A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through ...A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through a facile solution casting approach. The simple, but effective monomer sulfonation was performed for SFMC to create compact and rigid hydrophobic backbone structures, while conventional random sulfonation was carried-out for SPEEK. Hydrophilic-hydrophobic-hydrophilic structure of SFMC enhances the compatibility with SPEEK and GO and allows for an unprecedented approach to alter me- chanical strength and proton conductivity of ternary hybrid membrane, as verified from universal test machine (UTM) curves and alternating current (AC) impedance plots. The impact of GO integration on the morphology and roughness of hybrid membrane was scrutinized using field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). Ternary hybrid showed uniform intercalation of GO nanosheets throughout the entire surface of membrane with an increased surface roughness of 8.91 nm. The constructed ternary hybrid membrane revealed excellent water absorption, ion exchange capacity and gas barrier properties, while retaining reasonable dimensional stability. The well-optimized ternary hybrid membrane containing 5 wt% GO revealed a maximum proton conductivity of 111.9 mS/cm, which is higher by a factor of two-fold with respect to that of bare SFMC membrane. The maximum PEMFC power density of 528.07mW/cm2 was yielded by ternary hybrid membrane at a load current density of 1321.1 mA/cm2 when operating the cell at 70 ℃ under 100% relative humidity (RH). In comparison, a maximum power density of only 182.06 mW/cm2 was exhibited by the bare SFMC membrane at a load current density of 455.56 mA/cm2 under same operating conditions.展开更多
By means of the intensity theory of X-ray scattering and the two-phase concept of high polymer, the basic formula of the crystaUinity in block copolymers has been proposed after the corrections of atomic, temperature,...By means of the intensity theory of X-ray scattering and the two-phase concept of high polymer, the basic formula of the crystaUinity in block copolymers has been proposed after the corrections of atomic, temperature, absorption, Lorentz and polarization factor. Application of this method to different type poly (oxyethylene-styrene)block copolymers and the same type block copolymers with different EO contents indicates that the crystallinity in poly (oxyethylene-styrene ) block copolymers increases with the increase of the EO content and decreases in the order: PEO-PS-PEO>PEO-PS>PS-PEO-PS.展开更多
Poly[styrene(iodosodiacetate)] reacted with diaryl diselenides, followed by sodium azide, giving 1-azido-2-arylselenoalkanes regioselectively. The polymer reagent could be regenerated and reused.
A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polyme...A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polymerization (ATRP) in thepreparation of 4-armed polystyrene (PSt) with narrow polydispersity. The structure, molecular weight and molecular weightdistribution (MWD) of each arm were studied by ~1H-NMR and GPC data of hydrolyzed products of the 4-armed PSt. TheATRP of St using 1/CuBr/bpy as initiator system is of 'living' character based on the following evidence: narrow MWD,constant concentration of chain radical during the polymerization, control of molecular weight by the molar ratio of monomerconsumed to 1. The 4-armed poly(St-b-p-nitrophenyl methacrylate) [poly(St-b-NPMA)] was prepared by the ATRP ofNPMA using 4-armed PSt with terminal bromine as the initiator, and characterized by FT-IR, ~1H-NMR spectra and GPCcurves. The micelles with PSt as core, and PNPMA as shell were formed by dropping DMSO into a solution of 4-armedpoly(St-b-NPMA) in DMF, as proved by laser light scatter (LLS) method.展开更多
Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation ...Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation provides incremental proton conductivity to the membranes, whereas mechanical degradation drastically reduces device stability. On this basis, we describe here the effects of two different ex situ aging processes on sulfonated poly(ether ether ketone) membranes: hydrationdehydration cycling and prolonged hydrothermal treatment. Both aged membranes exhibited enhanced phase separation under the hydrated conditions, as characterized by small angle X-ray scattering.However, when the aged membranes were dried again, the nanostructure of the membranes aged via the hydration-dehydration cycling was recoverable, whereas that of the membranes aged via prolonged hydrothermal treatment was irreversible. Furthermore, the two differently aged membranes showed clear differences in thermal, mechanical, and electrochemical properties. Finally, we implemented both aged membranes in fuel cell application. The sample aged via hydration-dehydration cycling maintained its improved cell performance, whereas the sample aged via hydrothermal treatment showed drastically reduced cell performance after durability test for 50 h.展开更多
文摘High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.
基金Supported partially by Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences (No.55180219)
文摘Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS), then irradiated by Co γ-rays at 25℃. The effects of reaction 60 time,absorbed dose, dose-rate, inhibitor and monomer concentration on the grafting yield were studied. Grafting yields of both AA and SSS onto FEP, respectively, increase with irradiation dose, but some saturation will appear at high dose and monomer concentration. The grafting yield increases with reaction time and then levels off. The graft- ing of SSS onto FEP is more difficult than the grafting of AA. The analysis of grafted membranes using DSC and FT-IR have been done.
基金Supported by Program for New Century Excellent Talents in University(NCET-07-0738)
文摘Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgA1-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgA1-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems. In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10^- 3 S·m^-1 was achieved for the polymer electrolyte.
基金the National Natural Science Foundation of China for financial support.
文摘1, 2-Diliydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one(DHPZ) was sulfonated in concentrated Sulfuric acid. Poly(phthalazinone ether ketone) containing pendant sodium sulfonate group was synthesized from sulfonated and pure 1,2-dihydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one, and 4,4'-difluorodiphenylketone. The sulfonated monomer and sulfonated polymer were characterized with FT-IR and H-1-NMR.
基金Supported by the State Key Development Program for Basic Research of China (2008CB617502), the National Natural Science Foundation of China (20606025), and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0641).
文摘A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein poly(ether sulfone) (SPES-C, DS= 53.7%) is blended with the SPEEK matrix (DS= 55.1%, 61.7%) to prepare SPEEKJSPES-C blend membrane. The decrease in swelling degree and methanol permeability of the membrane is dose-dependent. Pure SPEEK (DS = 61.7%) membrane dissolves completely in water at 70℃, whereas the swelling degree of the SPEEK (DS = 61.7%)/SPES-C (40%, by mass) membrane is 29.7% at 80℃. From room temperature to 80℃, the methanol permeability of all SPEEK (DS = 55.1%)/SPES-C blend membranes is about one order of magnitude lower than that of Nafion 115. At higher temperature, the addition of SPES-C polymer increases the dimensional stability and greater proton conductivity can be achieved. The SPEEK (DS = 55.1%)/SPES-C (40%, by mass) membrane can withstand temperatures up to 150℃. The proton conductivity of SPEEK (DS = 55.1%)/SPES-C (30%, by mass) membrane approaches 0.16 S·cm^-1, matching that of Nafion 115 at 140℃ and 100% RH, while pure SPEEK (DS = 55.1%) membrane dissolves at 90℃. The SPEEK/SPES-C blend membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.
基金Supported by the State Key Development Program for Basic Research of China (2008CB617502), the National Natural Science Foundation of China (20606025), and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0641).
文摘A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS = 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80℃, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that ofNafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiO4-S (20%, by mass) membrane could withstand temperature up to 145℃, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion 1 15 membrane and reached 0.17 S·cm^-1, while pure SPEEK membrane dissolved at 90℃. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.
基金This work was financially supported by the National Science Foundation of China (NSFC) (Key project, No. 29734120)the China High-Tech Development 863 Program (No. 2003AA302410)+1 种基金Natural Science Foundation of Guangdong Province (Excellent Team Project, No. 015007)Canton Province Sci & Tech Bureau (Key Strategic Project, No. A1100402) and Guangzhou Sci & Tech Bureau
文摘A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place at the para position of the pendant phenyl rings because of the specially designed parent polymer. The position and degree of sulfonation were characterized by ^1H-NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N'-dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the films exhibited superior stability to oxidation. The proton conductivities of the films were comparable with Nation 117 under same conditions. The membrane electrode assembly (MEA) prepared with the asmade film (706 EW, 100 μm dry thickness) shows better cell performance than Nation 115-MEA in the whole current density range.
基金This project is supported by the National Natural Science Foundation of China(No.20104001).
文摘N,N'-Bis(3-hydroxyphenyl)-1,8,4,5-naphthalenetetracarboxylic bisimide was prepared from the reaction of 1,8,4,5-naphthalenetetrcarboxylic acid dianhydride and 2-aminophenol in N, N-dimethylformamide. Polymerization of this bisimide with 4,4'-difluorodiphenylsulfone and disodium 3,3'-disulfonate4,4'-difluorodiphenylsulfone gave ion-exchange sulfonated poly(ether sulfone). The structure of the title compound was characterized with H-NMR and its polymer was characterized with FT-IR.
文摘Disubstituted oxazoles were prepared conveniently by treatment of aromatic -methyl ketones and nitriles with poly[styrene(iodosodiacetate)] in one-pot process.
基金supported by the Beijing Municipal Project for Developing Advanced Human Resources for Higher Education(Elastomers and Biomaterials).
文摘The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.
文摘With the advent of plastics and the wide range of fillers that are available have made modifications as precise as the tailored resins themselves. To modify the properties of polymer either by using fillers or by preparation of polymer blends gives rise to new materials with tailored properties. More complex, three-component systems, obtained by the addition of polymeric modifier to polymer filled composites may be of interest. Use of Fly ash cenospheres is very attractive because it is inexpensive and its use can reduce the environmental pollution to a significant extent. In the present study, Poly (Methyl Methacrylate) (PMMA)-Fly ash cenospheres composites were prepared using extrusion followed by Injection molding. The effect of matrix modification with Methyl methacrylate– acrylonitrile -butadiene–styrene (MABS) on the performance of PMMA- Fly ash cenospheres compositions was also, studied. It was found that with the addition of Fly ash cenospheres particulate as filler in PMMA showed marginal reduction in Tensile Strength, % Elongation and Impact strength and improvement in Flexural Strength, Heat Deflection Temperature and Vicat Softening Point. Compared with PMMA-cenospheres composites, the notched Impact Strength of the PMMA/MABS/cenospheres composites showed marginal enhancement in values at higher loading of cenospheres. The optimum performances in mechanical and thermal properties were obtained when the ratio of MABS to cenospheres was 1:2.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
文摘Two-dimensional nuclear overhauser enhancement (2D NOESY)measurements show that sodium dodecyl sulfonate SDSN molecules co-aggregate with poly-ethylene glycol PEG in their aqueous solution at a concentration range of SDSN between the so-called co-aggregation concentration (cac) and the. Normal critical micellar concentration (cmc). SDSN micelles are formed when the cmc of SDSN is reached with PEG uniformly distributed in the interior.
文摘Low-temperature plasma treatment was adopted to graft styrene onto polytetrafluo- roethylene (PTFE) powder, which is widely used in the fabrication of proton exchange membrane (PEM). The grafted PTFE powder was sulfonated in chlorosulfonic acid and fabricated into a membrane, which was used as inexpensive PEM material for a proton exchange membrane fuel cell (PEMFC). Fourier transform infrared spectroscopy attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis were used to characterize the structure of the sulfonated PTFE powder. The results showed that all the PTFE powders were successfully grafted by nitrogen plasma and then sulfonated under such experimental conditions. A scanning electron microscopy (SEM) image indicated that the fabricated membrane exhibits flat morphology and homogenous structure. The ion exchange capacity (IEC) of this kind of PEM was also investigated.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20164030201070)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and future Planning(NRF-2017R1A2B4005230)
文摘A ternary hybrid membrane architecture consisting of sulfonated fluorinated multi-block copolymer (SFMC), sulfonated (poly ether ether ketone) (SPEEK) and I or 5 wt% graphene oxide (GO) was fabricated through a facile solution casting approach. The simple, but effective monomer sulfonation was performed for SFMC to create compact and rigid hydrophobic backbone structures, while conventional random sulfonation was carried-out for SPEEK. Hydrophilic-hydrophobic-hydrophilic structure of SFMC enhances the compatibility with SPEEK and GO and allows for an unprecedented approach to alter me- chanical strength and proton conductivity of ternary hybrid membrane, as verified from universal test machine (UTM) curves and alternating current (AC) impedance plots. The impact of GO integration on the morphology and roughness of hybrid membrane was scrutinized using field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). Ternary hybrid showed uniform intercalation of GO nanosheets throughout the entire surface of membrane with an increased surface roughness of 8.91 nm. The constructed ternary hybrid membrane revealed excellent water absorption, ion exchange capacity and gas barrier properties, while retaining reasonable dimensional stability. The well-optimized ternary hybrid membrane containing 5 wt% GO revealed a maximum proton conductivity of 111.9 mS/cm, which is higher by a factor of two-fold with respect to that of bare SFMC membrane. The maximum PEMFC power density of 528.07mW/cm2 was yielded by ternary hybrid membrane at a load current density of 1321.1 mA/cm2 when operating the cell at 70 ℃ under 100% relative humidity (RH). In comparison, a maximum power density of only 182.06 mW/cm2 was exhibited by the bare SFMC membrane at a load current density of 455.56 mA/cm2 under same operating conditions.
文摘By means of the intensity theory of X-ray scattering and the two-phase concept of high polymer, the basic formula of the crystaUinity in block copolymers has been proposed after the corrections of atomic, temperature, absorption, Lorentz and polarization factor. Application of this method to different type poly (oxyethylene-styrene)block copolymers and the same type block copolymers with different EO contents indicates that the crystallinity in poly (oxyethylene-styrene ) block copolymers increases with the increase of the EO content and decreases in the order: PEO-PS-PEO>PEO-PS>PS-PEO-PS.
基金Project 29932020 was supported by the National Natural Science Foundation of China.
文摘Poly[styrene(iodosodiacetate)] reacted with diaryl diselenides, followed by sodium azide, giving 1-azido-2-arylselenoalkanes regioselectively. The polymer reagent could be regenerated and reused.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29774027).
文摘A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polymerization (ATRP) in thepreparation of 4-armed polystyrene (PSt) with narrow polydispersity. The structure, molecular weight and molecular weightdistribution (MWD) of each arm were studied by ~1H-NMR and GPC data of hydrolyzed products of the 4-armed PSt. TheATRP of St using 1/CuBr/bpy as initiator system is of 'living' character based on the following evidence: narrow MWD,constant concentration of chain radical during the polymerization, control of molecular weight by the molar ratio of monomerconsumed to 1. The 4-armed poly(St-b-p-nitrophenyl methacrylate) [poly(St-b-NPMA)] was prepared by the ATRP ofNPMA using 4-armed PSt with terminal bromine as the initiator, and characterized by FT-IR, ~1H-NMR spectra and GPCcurves. The micelles with PSt as core, and PNPMA as shell were formed by dropping DMSO into a solution of 4-armedpoly(St-b-NPMA) in DMF, as proved by laser light scatter (LLS) method.
基金Byoungseok Min of Pohang Accelerator Laboratory for SAXS technical support at 4C beamline.All authors have read the manuscript and agreed to its contents。
文摘Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation provides incremental proton conductivity to the membranes, whereas mechanical degradation drastically reduces device stability. On this basis, we describe here the effects of two different ex situ aging processes on sulfonated poly(ether ether ketone) membranes: hydrationdehydration cycling and prolonged hydrothermal treatment. Both aged membranes exhibited enhanced phase separation under the hydrated conditions, as characterized by small angle X-ray scattering.However, when the aged membranes were dried again, the nanostructure of the membranes aged via the hydration-dehydration cycling was recoverable, whereas that of the membranes aged via prolonged hydrothermal treatment was irreversible. Furthermore, the two differently aged membranes showed clear differences in thermal, mechanical, and electrochemical properties. Finally, we implemented both aged membranes in fuel cell application. The sample aged via hydration-dehydration cycling maintained its improved cell performance, whereas the sample aged via hydrothermal treatment showed drastically reduced cell performance after durability test for 50 h.