The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discha...The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.展开更多
AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfo...AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfonic acid as a catalyzer, a series of hyperbranched poly(amide-ester) (HBPAE) were successfully synthesized from prepared AB2 monomer by solution condensation polymerization through "one-step process" or "pseudo one-step process" (using pentaerythritol as a center core). The processes were carried out at high temperature of 120 ℃ for 6 h in air atmosphere (inert protection free) with reduced pressure distillation (0.08--0.096 MPa). The results of FT-IR, UV-Vis, TGA, and intrinsic viscosity testing by Ubbelodhe viscometer showed that the prepared HBPAEs possess three-dimensional configuration with unsaturated conjugate structure, large numbers of branches and numerous terminal hydroxyl groups. These result in their low viscosity, high solubility and thermal stability.展开更多
Mono-alkyl-functionalized pillar[5]arenes PI, P2, and P3 were synthesized by click reaction, which exhibited different self-assembly behavior in polar solvent DMSO. Stable pseudo[ 1 ]rotaxane was formed by the self-co...Mono-alkyl-functionalized pillar[5]arenes PI, P2, and P3 were synthesized by click reaction, which exhibited different self-assembly behavior in polar solvent DMSO. Stable pseudo[ 1 ]rotaxane was formed by the self-complexation from P1 or P2, whereas, concentration-dependent pseudorotaxane structures were generated by P3 which bearing more flexible side chain. Interestingly, the obtained pseudo[1]rotaxanes exhibited a dynamic fast assembly process upon adding NaBF4, resulting in the formation of Na+-induced pseudorotaxanes.展开更多
The melts of a series of low molecular weight poly(ethylene oxide)(PEO) fractions on mica surfaces were studied by atomic force microscopy(AFM) and X-ray reflectivity(XRR) measurement.The PEO ultrathin films w...The melts of a series of low molecular weight poly(ethylene oxide)(PEO) fractions on mica surfaces were studied by atomic force microscopy(AFM) and X-ray reflectivity(XRR) measurement.The PEO ultrathin films were obtained via static dilute solution casting.Different from the melts of the PEO with both methoxyl((—OCH3)) end groups that are dewetted on the mica surface,a pseudo-dewetting phenomenon of the PEO melts was observed when either one end group of the PEOs becomes hydroxyl(—OH) or both are hydroxyl groups.The wetting layer thicknesses of the pseudo-dewetted melts were measured to be 4.5~4.7 nm,independent on the molecular weight and the end groups of PEOs.However,the PEO melt droplets on the wetting layer varied from spherical caps with relatively high contact angle to irregular shapes with relatively low contact angle when increasing the molecular weight and the hydrophobicity of end groups of PEOs.展开更多
从4,4'-二氟三苯二酮(DFTBDK)和酚酞出发,利用"拟高稀(pseudo high dillution)"技术,一步法制备酚酞聚芳醚酮酮环状齐聚物(c-PEKK-C),成环率78%。基质辅助激光解吸电离飞行时间质谱MALDI-TOF MS数据表明,聚合产物系聚合度为n=...从4,4'-二氟三苯二酮(DFTBDK)和酚酞出发,利用"拟高稀(pseudo high dillution)"技术,一步法制备酚酞聚芳醚酮酮环状齐聚物(c-PEKK-C),成环率78%。基质辅助激光解吸电离飞行时间质谱MALDI-TOF MS数据表明,聚合产物系聚合度为n=2~8的环状低聚物,其中以二、三聚体为主要成分(占环化产物的85%)。运用J-S高分子环化理论证实4,4'-二氟三苯二酮的单体结构有利于形成环状化合物。以4,4'-联苯二酚钾盐为催化剂,在300~350℃范围内,N2气保护下,环状齐聚物进行熔融开环聚合反应得到相应的线性高相对分子质量酚酞聚芳醚酮酮(ROP-PEKK-C),GPC测得其Mw为1.2×10^5。展开更多
文摘The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.
基金the National Science and Technology Support Project of "the Eleventh Five-year Plan"(2006BAE03B06-03)the New Century Talents Support Program of Chinese Education Department (NCET-04-0614)
文摘AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfonic acid as a catalyzer, a series of hyperbranched poly(amide-ester) (HBPAE) were successfully synthesized from prepared AB2 monomer by solution condensation polymerization through "one-step process" or "pseudo one-step process" (using pentaerythritol as a center core). The processes were carried out at high temperature of 120 ℃ for 6 h in air atmosphere (inert protection free) with reduced pressure distillation (0.08--0.096 MPa). The results of FT-IR, UV-Vis, TGA, and intrinsic viscosity testing by Ubbelodhe viscometer showed that the prepared HBPAEs possess three-dimensional configuration with unsaturated conjugate structure, large numbers of branches and numerous terminal hydroxyl groups. These result in their low viscosity, high solubility and thermal stability.
基金the financial support from the National Natural Science Foundation of China(Nos.21472089,21572101)the National Natural Science Foundation of Jiangsu(No.BK20140595)
文摘Mono-alkyl-functionalized pillar[5]arenes PI, P2, and P3 were synthesized by click reaction, which exhibited different self-assembly behavior in polar solvent DMSO. Stable pseudo[ 1 ]rotaxane was formed by the self-complexation from P1 or P2, whereas, concentration-dependent pseudorotaxane structures were generated by P3 which bearing more flexible side chain. Interestingly, the obtained pseudo[1]rotaxanes exhibited a dynamic fast assembly process upon adding NaBF4, resulting in the formation of Na+-induced pseudorotaxanes.
文摘The melts of a series of low molecular weight poly(ethylene oxide)(PEO) fractions on mica surfaces were studied by atomic force microscopy(AFM) and X-ray reflectivity(XRR) measurement.The PEO ultrathin films were obtained via static dilute solution casting.Different from the melts of the PEO with both methoxyl((—OCH3)) end groups that are dewetted on the mica surface,a pseudo-dewetting phenomenon of the PEO melts was observed when either one end group of the PEOs becomes hydroxyl(—OH) or both are hydroxyl groups.The wetting layer thicknesses of the pseudo-dewetted melts were measured to be 4.5~4.7 nm,independent on the molecular weight and the end groups of PEOs.However,the PEO melt droplets on the wetting layer varied from spherical caps with relatively high contact angle to irregular shapes with relatively low contact angle when increasing the molecular weight and the hydrophobicity of end groups of PEOs.
文摘从4,4'-二氟三苯二酮(DFTBDK)和酚酞出发,利用"拟高稀(pseudo high dillution)"技术,一步法制备酚酞聚芳醚酮酮环状齐聚物(c-PEKK-C),成环率78%。基质辅助激光解吸电离飞行时间质谱MALDI-TOF MS数据表明,聚合产物系聚合度为n=2~8的环状低聚物,其中以二、三聚体为主要成分(占环化产物的85%)。运用J-S高分子环化理论证实4,4'-二氟三苯二酮的单体结构有利于形成环状化合物。以4,4'-联苯二酚钾盐为催化剂,在300~350℃范围内,N2气保护下,环状齐聚物进行熔融开环聚合反应得到相应的线性高相对分子质量酚酞聚芳醚酮酮(ROP-PEKK-C),GPC测得其Mw为1.2×10^5。