A new six-membered cyclic carbonate monomer, 5-allyloxytrimethylene carbonate (ATMC), was synthesized starting from glycerol, and the corresponding polycarbonates, poly(5-allyloxytrimethylene carbonate)(PATMC) w...A new six-membered cyclic carbonate monomer, 5-allyloxytrimethylene carbonate (ATMC), was synthesized starting from glycerol, and the corresponding polycarbonates, poly(5-allyloxytrimethylene carbonate)(PATMC) were further synthesized by ring-opening polymerization in bulk at 150℃ using stannous octanoate as an initiator. The structures of the monomer and the polymers were confirmed by IR, IH-NMR, 13C-NMR, and GPC analysis.展开更多
The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-63...The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by CrC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.展开更多
The improvement of biocompatibility of polyurethanes was investigated.The results demonstrate that the blood compatibility of polyurethanes can be further improved by just simply mixing with the fluorinated phosphatid...The improvement of biocompatibility of polyurethanes was investigated.The results demonstrate that the blood compatibility of polyurethanes can be further improved by just simply mixing with the fluorinated phosphatidylcholine poly(carbonate urethane)s(FPCPCUs).The solution blending was done by mixing poly(ether urethane)(PEU)with FPCPCU in different compositions.An increased blood compatibility of the blend films was observed with the increase of FPCPCU content,and when FPCPCU content reached to 40 wt%(40F...展开更多
The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface...The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface morphology. In this work, we report the uppermost surface morphology of fluorinated poly(carbonate urethane)s with fluorinated side chains attached to hard segments as studied by AFM, XPS and contact angle measurement. A self-assembled micro-domain with the fluorinated side chain standing up on the uppermost surface has been proposed for polyurethane with higher fluorinated content, based on the result obtained.展开更多
Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting a...Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.展开更多
Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide(Et4NBr)in combination with bulky Lewis acid was used for the copolymerization of CO_2 and cyclohexene oxide(CHO).Bulky Lewis acid having ...Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide(Et4NBr)in combination with bulky Lewis acid was used for the copolymerization of CO_2 and cyclohexene oxide(CHO).Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands,like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity,the corresponding turnover frequency reached 44.9 h^(-1)in 9 h,which was 23.8% higher than th...展开更多
In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magneti...In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magnetic resonance spectroscopy ('H-NMR), in conjunction with a model compound. The 1 H-NMR results of the annealed blend PC/BCL(21) show that the formation of bisphenol A-terephthalate ester units is the same as in the annealed blend of PC with PBT, and the transesterification actually occurs between PC and butylene terephthalate (BT) segments in BCL(21). By comparison with the model compound bisphenol A dibutyrate, the new signal appearing at δ= 2.56 in the 1H-NMR spectrum confirms the existence of bisphenol A caprolactone ester units resulting from the exchange reaction of PC with caprolactone (CL) segments. 1H-NMR analysis of the transesterification rates reveals that the reaction of PC with aromatic and aliphatic segments in BCL(21) proceeds in a random manner. The miscibility of the blend PC/BCL(21) copolyester is favorable for the transesterification of PC with BT segments and CL segments.展开更多
In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile t...In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.展开更多
High-molecular-weight aliphatic polycarbonates(APCs) were synthesized through a two-step transesterification process under solvent-free conditions. Oligomers with equal numbers of hydroxyl and phenyl carbonate termi...High-molecular-weight aliphatic polycarbonates(APCs) were synthesized through a two-step transesterification process under solvent-free conditions. Oligomers with equal numbers of hydroxyl and phenyl carbonate terminal groups could be easily controlled by using equimolar amounts of diphenyl carbonate(DPC) and aliphatic diols as feedstocks in the first step. In the second step, the high-molecular-weight APCs can be obtained by connecting -OH with -OC(O)OC6H5 end-group upon removing the generated phenol at reduced pressure. Mg(OAc)2 was found to be the best catalyst for this process among the screened catalysts, which gave the poly(l,4-butylene carbonate)(PBC) a weight-average molecular weight(Mw) of 148600 and a yield of 84.8% under its suitable reaction conditions. In addition, based on the results of X-ray diffraction(XRD), scanning electron microscopy(SEM) and fourier transform infrared spectroscopy(FTIR), a possible reaction mechanism over Mg(OAe)2 was proposed for APCs synthesis.展开更多
Thermally stable and biodegradable composites from poly (propylene carbonate) (PPC), poly (ethylene-co-vinyl alcohol) (EVOH), starch and CaCO3 were fabricated by melt blending. Differential scanning calorimet...Thermally stable and biodegradable composites from poly (propylene carbonate) (PPC), poly (ethylene-co-vinyl alcohol) (EVOH), starch and CaCO3 were fabricated by melt blending. Differential scanning calorimetry (DSC), differential thermal analysis/thermal gravimetric analysis (DTA/TGA), tensile test and scanning electron microscope (SEM) were performed to investigate the miscibility, thermal behavior and tensile properties of the PPC/EVOH/Starch/CaCO3 composites. DSC results indicate that the introduction of EVOH could improve the compatibility between PPC and starch to some extent because of the interfacial interaction between PPC and EVOH, leading to an increase in tensile strength. The tensile strength began to decrease when more starch was added due to the aggregation of starch particles. SEM examination showed the good interracial bonding between the fillers and polymeric components. The incorporation of both EVOH and fillers can greatly increase the thermal stability of PPC matrix. The PPC/EVOH/Starch/CaCO3 composites can be melt processed and can be used as a common biodegradable material for a wide application.展开更多
Comprehensive Summary Four heterometallic rare earth(Ⅲ)-cobalt(Ⅱ)complexes(rare earth=Y(1),Sm(2),Nd(3),La(4))stabilized by an o-phenylenediamine-bridged tris(phenolato)ligand(L)have been synthesized and characterize...Comprehensive Summary Four heterometallic rare earth(Ⅲ)-cobalt(Ⅱ)complexes(rare earth=Y(1),Sm(2),Nd(3),La(4))stabilized by an o-phenylenediamine-bridged tris(phenolato)ligand(L)have been synthesized and characterized.In these tetranuclear complexes,one polydentate L coordinates to one rare earth(Ⅲ)ion,and one cobalt(Ⅱ)ion,respectively,while two rare earth ions are bridged by four acetate groups.These complexes were applied in the copolymerization of cyclohexene oxide and CO_(2),which showed good activity(TON up to 440)and high poly(cyclohexene carbonate)selectivity(>99%).Kinetic studies determined the equation as rate=k[CHO]1[CO_(2)]0[initiator]1,which proves a first-order dependence on initiator concentrations and implies a synergistic mechanism with rare earth and cobalt ions cooperating in epoxide ring-opening and chain propagation.展开更多
A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modif...A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modified by bis(tert-butyl dioxy isopropyl)benzene(BIBP)for chain extension,and then the extended PBAT(E-PBAT)was foamed with PPC using a twin(single)screw extruder.By analyzing the properties of the blends,we found that Young’s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC 50/50.The viscosity of the polymer has a critical influence on the formation of cells.Compared with neat PBAT(N-PBAT),the viscosity of E-PBAT increased by 3396 Pa·s and E-PBAT/PPC 50/50 increased by 8836 Pa·s.Meanwhile,the dynamic mechanical analysis(DMA)results showed that the storage modulus(E’)at room temperature increased from 538 MPa to 1650 MPa.The various phase morphologies(“sea-island”,“quasi-co-continuous”and“cocontinuous”)and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam.Therefore,through the analysis of phase morphology and foaming mechanism,we concluded that the E-PBAT/PPC 70/30 component has both excellent strength and the best foaming performance.展开更多
Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film tech...Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging.展开更多
Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environmen...Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environment for cell attachment and proliferation due to similarities of their physical properties to natural extracellular matrix. Poly(propylene carbonate) (PPC) nanofibrous scaffolds have been investigated for vascular tissue engineering. However, no reports exist of PPC nanofibrous scaffolds for nerve tissue engineering. This study aimed to evaluate the potential role of aligned and random PPC nanofibrous scaffolds as substrates for peripheral nerve tissue and cells in nerve tissue engineering. Methods Aligned and random PPC nanofibrous scaffolds were fabricated by electrospinning and their chemical characterization were carried out using scanning electron microscopy (SEM). Dorsal root ganglia (DRG) from Sprague-Dawley rats were cultured on the nanofibrous substrates for 7 days. Neurite outgrowth and Schwann-ceU migration from DRG were observed and quantified using immunocytochemistry and SEM. Schwann cells derived from rat sciatic nerves were cultured in electrospun PPC scaffold-extract fluid for 24, 48, 72 hours and 7 days. The viability of Schwann cells was evaluated by 3-[4,5-dimethyl(thiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (M]-F) assay. Results The diameter of aligned and random fibers ranged between 800 nm and 1200 nm, and the thickness of the films was approximately 10-20 IJm. Quantification of aligned fiber films revealed approximately 90% alignment of all fibers along the longitudinal axis. However, with random fiber films, the alignment of fibers was random through all angle bins. Rat DRG explants were grown on PPC nanofiber films for up to 1 week. On the aligned fiber films, the majority of neurite outgrowth and Schwann cell migration from the DRG extended unidirectionally, parallel to the aligned fibers. However, on the random fiber films, neurite outgrowth and Schwann cell migration were randomly distributed. A comparison of cumulative neurite lengths from cultured DRGs indicated that neurites grew faster on aligned PPC films ((2537.6±987.3) μm) than randomly-distributed fibers ((493.5±50.6) μm). The average distance of Schwann cell migration on aligned PPC nanofibrous films ((2803.5±943.6) μm) were significantly greater than those on random fibers ((625.3±47.8) pm). The viability of Schwann cells cultured in aligned PPC scaffold extract fluid was not significantly different from that in the plain DMEM/F12 medium at all time points after seeding. Conclusions The aligned PPC nanofibrous film, but not the randomly-oriented fibers, significantly enhanced peripheral nerve regeneration in vitro, indicating the substantial role of topographical cues in stimulating endogenous nerve repair mechanisms. Aligned PPC nanofibrous scaffolds may be a promising biomaterial for nerve regeneration.展开更多
Poly(propylene carbonate) (PPC) was melt blended in a batch mixer with poly(butylene carbonate) (PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibi...Poly(propylene carbonate) (PPC) was melt blended in a batch mixer with poly(butylene carbonate) (PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC.展开更多
High-performance solid polymer electrolyte (SPE) has long been desired for the next-generation high energy density and safe rechargeable lithium batteries. A SPE composed of 80 wt% lithium bis(trifluo-romethanesulf...High-performance solid polymer electrolyte (SPE) has long been desired for the next-generation high energy density and safe rechargeable lithium batteries. A SPE composed of 80 wt% lithium bis(trifluo-romethanesulfonyl)imide (LiTFSI), 20% poly(ethylene carbonate) (PEC) and a polyamide (PA) fiber membrane backbone was prepared by solution-casting method. This solid electrolyte exhibits quite high ionic conductivity and lithium ion transference number (t+), and excellent mechanical strength. The as-prepared solid electrolyte shows good wettability to porous electrodes during cycles, which is beneficial to form ionically conductive phase throughout porous electrodes. All-solid-state LiFePO4lLi cells assembled with the as-prepared solid electrolyte deliver a high initial discharge specific capacity of 125.7 mAh·g^-1 and good cycling stability at 55 ℃ (93.4% retention at 1C after 200 cycles), and superior cycle performance. Outstanding electrochemical performance can be mainly ascribed to the improved ionic conductivity in the entire porous electrodes due to the good wettability of SPE.展开更多
Sustainable blends of poly(propylene carbonate)(PPC)and stereocomplex polylactide(sc-PLA)were prepared by melt blending equimolar poly(L-lactic acid)(PLLA)and poly(D-lactide acid)(PDLA)with PPC to form sc-PLA crystals...Sustainable blends of poly(propylene carbonate)(PPC)and stereocomplex polylactide(sc-PLA)were prepared by melt blending equimolar poly(L-lactic acid)(PLLA)and poly(D-lactide acid)(PDLA)with PPC to form sc-PLA crystals in situ in the melt blending process.Differential seanning calorimetry analysis revealed that only sc-PLA,no homo-crystallization of PLLA or PDLA,formed in the PPC matrix as the sc-PLA con tent was more than 10 wt%.Very in triguingly,scan ning electronic microscopy observati on showed that sc-PLA was evenly dispersed in the PPC phase as spherical particles and the sizes of sc-PLA particles did not obviously increase with in creasing sc-PLA con tent.As a con seque nee,the rheological properties of PPC were greatly improved by incorporation of sc-PLA.When the sc-PLA con tent was 20 wt%,a percolati on n etwork structure was formed,and the blends showed solid-like behavior.The sc-PLA particles could reinforce the PPC matrix,especially at a temperature above the glass transition temperature of PPC.Moreover,the Vicat softening temperature of PPC/sc-PLA blends could be increased compared with that of neat PPC.展开更多
Mg-A1 mixed oxides with different Mg/A1 molar ratio were prepared by thermal decomposition of hydrotalcite- like precursors at 500 ℃ for 5.0 h and used as catalysts for the transesterification of diphenyl carbonate w...Mg-A1 mixed oxides with different Mg/A1 molar ratio were prepared by thermal decomposition of hydrotalcite- like precursors at 500 ℃ for 5.0 h and used as catalysts for the transesterification of diphenyl carbonate with 1,4-butanediol to synthesize high-molecular-weight poly(butylene carbonate) (PBC). The structure-activity correlations of these catalysts in this transesterification process were discussed by means of various characterization techniques. It was found that the chain growth for the formation of PBC can only be obtained through connecting -OH and -OC(C)OC6H5 end-group upon removing the generated phenol, and the sample with Mg/A1 molar ratio of 4.0 exhibited the best catalytic performance, giving PBC with Mw of 1.64 × 105 g/mol at 210℃ for 3.0 h. This excellent activity depended mainly on the specific surface area and basicity rather than pore structure or crystallite size of MgO.展开更多
Ca/SBA-15 solid bases with different Ca/Si atomic ratios were prepared by a one-pot route and employed as catalysts for the production of poly(isosorbide carbonate) (PIC) from diphenyl carbonate and isosorbide via...Ca/SBA-15 solid bases with different Ca/Si atomic ratios were prepared by a one-pot route and employed as catalysts for the production of poly(isosorbide carbonate) (PIC) from diphenyl carbonate and isosorbide via a transesterification polymerization process. The relationship between physicochemical properties and catalytic performance for Ca/SBA-15 in this melt process was investigated by means of various characterization techniques. It was found that basic site amount and strength were responsible for this transesterification process; the weak and medium basic sites inclined to promote polycondensation reaction. It was worth noting that strong basic sites could favor the decomposition of the resultant P/C, resulting in the decrease of weight-average molecular weight (Mw) and yield, and the sample with Ca/Si atomic ratio of 0.4 exhibited the best catalytic performance, giving PIC with Mw of 4.88 × 10^4 g/mol and Tg of 169 ℃ at the optimal conditions. This excellent activity can be ascribed to the presence of rich basic sites and specific basic strength on the surface of 0.4Ca/SBA-15.展开更多
Biodegradable polymers are a promising sustainable alternative to conventional petroleum-based polymers and have attracted recent extensive research interest due to their potential environmental friendliness and susta...Biodegradable polymers are a promising sustainable alternative to conventional petroleum-based polymers and have attracted recent extensive research interest due to their potential environmental friendliness and sustainability. Among them, aliphatic polyesters and polycarbonates are the most extensively studied ones. The metal-catalyzed ring-opening polymerization(ROP) of cyclic esters and ring-opening copolymerization(ROCOP) of epoxides with anhydrides or CO_(2) are often considered to be the classic and efficient methods to synthesize stereoregular polymers. Moreover, the versatile salen-type metal complexes have been used to prepare almost all types of biodegradable polymers with excellent stereoselectivity control. Hence, this review focuses on stereoselective synthesis of biodegradable polymers by salen-type metal catalysts developed in the last decade.Aliphatic polyesters from ROP of cyclic esters, ROCOP of epoxides with cyclic anhydrides, and carbonylative polymerization of epoxides, as well as aliphatic poly(thio)carbonate from ROCOP of epoxides with CO_(2) or COS are discussed in detail. This review highlights the polymerization mechanisms, catalyst characteristics, and factors controlling the stereoselectivity of each polymerization reaction, aiming to provide general rules for the future design of stereoselective catalysts.展开更多
基金support of the National Natural Science Foundation of China(Grant No.20104005)
文摘A new six-membered cyclic carbonate monomer, 5-allyloxytrimethylene carbonate (ATMC), was synthesized starting from glycerol, and the corresponding polycarbonates, poly(5-allyloxytrimethylene carbonate)(PATMC) were further synthesized by ring-opening polymerization in bulk at 150℃ using stannous octanoate as an initiator. The structures of the monomer and the polymers were confirmed by IR, IH-NMR, 13C-NMR, and GPC analysis.
文摘The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by CrC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.50673063 and 50533050)Young Foundation of Sichuan University for Financial Support.This work was also subsidized by the Special Funds for Major State Basic Research Projects of China(No.2003CB615600).
文摘The improvement of biocompatibility of polyurethanes was investigated.The results demonstrate that the blood compatibility of polyurethanes can be further improved by just simply mixing with the fluorinated phosphatidylcholine poly(carbonate urethane)s(FPCPCUs).The solution blending was done by mixing poly(ether urethane)(PEU)with FPCPCU in different compositions.An increased blood compatibility of the blend films was observed with the increase of FPCPCU content,and when FPCPCU content reached to 40 wt%(40F...
基金This work was supported by the China National Distinguished Young Investigator Fund (29925413) and the NationalNatural Science Foundation of China (Project number 50303014).
文摘The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface morphology. In this work, we report the uppermost surface morphology of fluorinated poly(carbonate urethane)s with fluorinated side chains attached to hard segments as studied by AFM, XPS and contact angle measurement. A self-assembled micro-domain with the fluorinated side chain standing up on the uppermost surface has been proposed for polyurethane with higher fluorinated content, based on the result obtained.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A611)
文摘Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.
基金The work was financially supported by the National Natural Science Foundation of China(No.20634040).
文摘Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide(Et4NBr)in combination with bulky Lewis acid was used for the copolymerization of CO_2 and cyclohexene oxide(CHO).Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands,like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity,the corresponding turnover frequency reached 44.9 h^(-1)in 9 h,which was 23.8% higher than th...
文摘In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magnetic resonance spectroscopy ('H-NMR), in conjunction with a model compound. The 1 H-NMR results of the annealed blend PC/BCL(21) show that the formation of bisphenol A-terephthalate ester units is the same as in the annealed blend of PC with PBT, and the transesterification actually occurs between PC and butylene terephthalate (BT) segments in BCL(21). By comparison with the model compound bisphenol A dibutyrate, the new signal appearing at δ= 2.56 in the 1H-NMR spectrum confirms the existence of bisphenol A caprolactone ester units resulting from the exchange reaction of PC with caprolactone (CL) segments. 1H-NMR analysis of the transesterification rates reveals that the reaction of PC with aromatic and aliphatic segments in BCL(21) proceeds in a random manner. The miscibility of the blend PC/BCL(21) copolyester is favorable for the transesterification of PC with BT segments and CL segments.
基金This work was supported by the National Natural Science Foundation of China(Nos.270274049 and 220374051).
文摘In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends.
文摘High-molecular-weight aliphatic polycarbonates(APCs) were synthesized through a two-step transesterification process under solvent-free conditions. Oligomers with equal numbers of hydroxyl and phenyl carbonate terminal groups could be easily controlled by using equimolar amounts of diphenyl carbonate(DPC) and aliphatic diols as feedstocks in the first step. In the second step, the high-molecular-weight APCs can be obtained by connecting -OH with -OC(O)OC6H5 end-group upon removing the generated phenol at reduced pressure. Mg(OAc)2 was found to be the best catalyst for this process among the screened catalysts, which gave the poly(l,4-butylene carbonate)(PBC) a weight-average molecular weight(Mw) of 148600 and a yield of 84.8% under its suitable reaction conditions. In addition, based on the results of X-ray diffraction(XRD), scanning electron microscopy(SEM) and fourier transform infrared spectroscopy(FTIR), a possible reaction mechanism over Mg(OAe)2 was proposed for APCs synthesis.
基金Funded by Guangdong Province Sci&Tech Bureau(No.2006B12401006)Guangzhou Sci&Tech Bureau(No.2005U13D2031),P.R.China
文摘Thermally stable and biodegradable composites from poly (propylene carbonate) (PPC), poly (ethylene-co-vinyl alcohol) (EVOH), starch and CaCO3 were fabricated by melt blending. Differential scanning calorimetry (DSC), differential thermal analysis/thermal gravimetric analysis (DTA/TGA), tensile test and scanning electron microscope (SEM) were performed to investigate the miscibility, thermal behavior and tensile properties of the PPC/EVOH/Starch/CaCO3 composites. DSC results indicate that the introduction of EVOH could improve the compatibility between PPC and starch to some extent because of the interfacial interaction between PPC and EVOH, leading to an increase in tensile strength. The tensile strength began to decrease when more starch was added due to the aggregation of starch particles. SEM examination showed the good interracial bonding between the fillers and polymeric components. The incorporation of both EVOH and fillers can greatly increase the thermal stability of PPC matrix. The PPC/EVOH/Starch/CaCO3 composites can be melt processed and can be used as a common biodegradable material for a wide application.
基金financial support from the National Natural Science Foundation of China(21871198)the Major Research Project of the Natural Science of the Jiangsu Higher Education Institutions(19KJA360005 and 19KJA320007),and PAPD.
文摘Comprehensive Summary Four heterometallic rare earth(Ⅲ)-cobalt(Ⅱ)complexes(rare earth=Y(1),Sm(2),Nd(3),La(4))stabilized by an o-phenylenediamine-bridged tris(phenolato)ligand(L)have been synthesized and characterized.In these tetranuclear complexes,one polydentate L coordinates to one rare earth(Ⅲ)ion,and one cobalt(Ⅱ)ion,respectively,while two rare earth ions are bridged by four acetate groups.These complexes were applied in the copolymerization of cyclohexene oxide and CO_(2),which showed good activity(TON up to 440)and high poly(cyclohexene carbonate)selectivity(>99%).Kinetic studies determined the equation as rate=k[CHO]1[CO_(2)]0[initiator]1,which proves a first-order dependence on initiator concentrations and implies a synergistic mechanism with rare earth and cobalt ions cooperating in epoxide ring-opening and chain propagation.
基金financially supported by the National Key Research and Development Program of China(No.2016YFC0501402)Science and Technology Services Network Program of Chinese Science Academy(STS Project)(No.KFJSTS-ZDTP-082)Chinese Academy of Sciences(Changchun Branch)(Nos.2020SYHZ0002 and No.2020SYHZ0047)。
文摘A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modified by bis(tert-butyl dioxy isopropyl)benzene(BIBP)for chain extension,and then the extended PBAT(E-PBAT)was foamed with PPC using a twin(single)screw extruder.By analyzing the properties of the blends,we found that Young’s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC 50/50.The viscosity of the polymer has a critical influence on the formation of cells.Compared with neat PBAT(N-PBAT),the viscosity of E-PBAT increased by 3396 Pa·s and E-PBAT/PPC 50/50 increased by 8836 Pa·s.Meanwhile,the dynamic mechanical analysis(DMA)results showed that the storage modulus(E’)at room temperature increased from 538 MPa to 1650 MPa.The various phase morphologies(“sea-island”,“quasi-co-continuous”and“cocontinuous”)and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam.Therefore,through the analysis of phase morphology and foaming mechanism,we concluded that the E-PBAT/PPC 70/30 component has both excellent strength and the best foaming performance.
基金financially supported by the fund of Science&Technology Bureau of Jilin Province of China(No.20130305028NY)Chinese Science Academy(Changchun Branch)(No.2014SYHZ0019)+1 种基金the National High Technology Research and Development Program of China(863 Program)(No.2012AA062904)the National Natural Science Foundation of China(No.51021003)
文摘Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging.
基金This study was supported by grants from the Hi-Tech Research and Development Program of China ("863" Program, No. 2009AA03Z312), Beijing Natural Science Foundation (The oriented micro-structure, double-aligned nerve-derived extracellular matrix scaffolds promote peripheral nerve long defects regeneration).
文摘Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environment for cell attachment and proliferation due to similarities of their physical properties to natural extracellular matrix. Poly(propylene carbonate) (PPC) nanofibrous scaffolds have been investigated for vascular tissue engineering. However, no reports exist of PPC nanofibrous scaffolds for nerve tissue engineering. This study aimed to evaluate the potential role of aligned and random PPC nanofibrous scaffolds as substrates for peripheral nerve tissue and cells in nerve tissue engineering. Methods Aligned and random PPC nanofibrous scaffolds were fabricated by electrospinning and their chemical characterization were carried out using scanning electron microscopy (SEM). Dorsal root ganglia (DRG) from Sprague-Dawley rats were cultured on the nanofibrous substrates for 7 days. Neurite outgrowth and Schwann-ceU migration from DRG were observed and quantified using immunocytochemistry and SEM. Schwann cells derived from rat sciatic nerves were cultured in electrospun PPC scaffold-extract fluid for 24, 48, 72 hours and 7 days. The viability of Schwann cells was evaluated by 3-[4,5-dimethyl(thiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (M]-F) assay. Results The diameter of aligned and random fibers ranged between 800 nm and 1200 nm, and the thickness of the films was approximately 10-20 IJm. Quantification of aligned fiber films revealed approximately 90% alignment of all fibers along the longitudinal axis. However, with random fiber films, the alignment of fibers was random through all angle bins. Rat DRG explants were grown on PPC nanofiber films for up to 1 week. On the aligned fiber films, the majority of neurite outgrowth and Schwann cell migration from the DRG extended unidirectionally, parallel to the aligned fibers. However, on the random fiber films, neurite outgrowth and Schwann cell migration were randomly distributed. A comparison of cumulative neurite lengths from cultured DRGs indicated that neurites grew faster on aligned PPC films ((2537.6±987.3) μm) than randomly-distributed fibers ((493.5±50.6) μm). The average distance of Schwann cell migration on aligned PPC nanofibrous films ((2803.5±943.6) μm) were significantly greater than those on random fibers ((625.3±47.8) pm). The viability of Schwann cells cultured in aligned PPC scaffold extract fluid was not significantly different from that in the plain DMEM/F12 medium at all time points after seeding. Conclusions The aligned PPC nanofibrous film, but not the randomly-oriented fibers, significantly enhanced peripheral nerve regeneration in vitro, indicating the substantial role of topographical cues in stimulating endogenous nerve repair mechanisms. Aligned PPC nanofibrous scaffolds may be a promising biomaterial for nerve regeneration.
基金financially supported by the fund of Science&Technology Bureau of Jilin Province of China(No.20126023)the National High Technology Research and Development Program of China(863 Program)(No.2012AA062904)the National Natural Science Foundation of China(No.51021003)
文摘Poly(propylene carbonate) (PPC) was melt blended in a batch mixer with poly(butylene carbonate) (PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC.
基金financially supported by the National Natural Scientific Foundation of China(No.51532002)Beijing Natural Science Foundation(No.L172023)the National Basic Research Program of China(No.2015CB932500)
文摘High-performance solid polymer electrolyte (SPE) has long been desired for the next-generation high energy density and safe rechargeable lithium batteries. A SPE composed of 80 wt% lithium bis(trifluo-romethanesulfonyl)imide (LiTFSI), 20% poly(ethylene carbonate) (PEC) and a polyamide (PA) fiber membrane backbone was prepared by solution-casting method. This solid electrolyte exhibits quite high ionic conductivity and lithium ion transference number (t+), and excellent mechanical strength. The as-prepared solid electrolyte shows good wettability to porous electrodes during cycles, which is beneficial to form ionically conductive phase throughout porous electrodes. All-solid-state LiFePO4lLi cells assembled with the as-prepared solid electrolyte deliver a high initial discharge specific capacity of 125.7 mAh·g^-1 and good cycling stability at 55 ℃ (93.4% retention at 1C after 200 cycles), and superior cycle performance. Outstanding electrochemical performance can be mainly ascribed to the improved ionic conductivity in the entire porous electrodes due to the good wettability of SPE.
基金the Chinese Academy of scienee and technology service network planning(No.KFJSTS-QYZD-140)a program of Cooperation of Hubei Province and Chinese Academy of Sciences,Innovation team project of Beijing Institute of Science and Technology(No.IG201703N)"13^th five-year"Science and Technology Research Program of the Education Department of Jilin Provinee(No.JJKH20190862KJ).
文摘Sustainable blends of poly(propylene carbonate)(PPC)and stereocomplex polylactide(sc-PLA)were prepared by melt blending equimolar poly(L-lactic acid)(PLLA)and poly(D-lactide acid)(PDLA)with PPC to form sc-PLA crystals in situ in the melt blending process.Differential seanning calorimetry analysis revealed that only sc-PLA,no homo-crystallization of PLLA or PDLA,formed in the PPC matrix as the sc-PLA con tent was more than 10 wt%.Very in triguingly,scan ning electronic microscopy observati on showed that sc-PLA was evenly dispersed in the PPC phase as spherical particles and the sizes of sc-PLA particles did not obviously increase with in creasing sc-PLA con tent.As a con seque nee,the rheological properties of PPC were greatly improved by incorporation of sc-PLA.When the sc-PLA con tent was 20 wt%,a percolati on n etwork structure was formed,and the blends showed solid-like behavior.The sc-PLA particles could reinforce the PPC matrix,especially at a temperature above the glass transition temperature of PPC.Moreover,the Vicat softening temperature of PPC/sc-PLA blends could be increased compared with that of neat PPC.
基金financially supported by the National Key Technology Pillar Program(No.2013BAC11B05)Key Research and Innovation Program of Jiangsu Province(No.BE2015055)the Science&Technology Pillar Program in Sichuan Province(No.2016GZ0228)
文摘Mg-A1 mixed oxides with different Mg/A1 molar ratio were prepared by thermal decomposition of hydrotalcite- like precursors at 500 ℃ for 5.0 h and used as catalysts for the transesterification of diphenyl carbonate with 1,4-butanediol to synthesize high-molecular-weight poly(butylene carbonate) (PBC). The structure-activity correlations of these catalysts in this transesterification process were discussed by means of various characterization techniques. It was found that the chain growth for the formation of PBC can only be obtained through connecting -OH and -OC(C)OC6H5 end-group upon removing the generated phenol, and the sample with Mg/A1 molar ratio of 4.0 exhibited the best catalytic performance, giving PBC with Mw of 1.64 × 105 g/mol at 210℃ for 3.0 h. This excellent activity depended mainly on the specific surface area and basicity rather than pore structure or crystallite size of MgO.
基金financially supported by the National Key R&D Program of China(No.2016YFB0301900)the Science and Technology Support Program of Sichuan Province(No.2015GZ0065)
文摘Ca/SBA-15 solid bases with different Ca/Si atomic ratios were prepared by a one-pot route and employed as catalysts for the production of poly(isosorbide carbonate) (PIC) from diphenyl carbonate and isosorbide via a transesterification polymerization process. The relationship between physicochemical properties and catalytic performance for Ca/SBA-15 in this melt process was investigated by means of various characterization techniques. It was found that basic site amount and strength were responsible for this transesterification process; the weak and medium basic sites inclined to promote polycondensation reaction. It was worth noting that strong basic sites could favor the decomposition of the resultant P/C, resulting in the decrease of weight-average molecular weight (Mw) and yield, and the sample with Ca/Si atomic ratio of 0.4 exhibited the best catalytic performance, giving PIC with Mw of 4.88 × 10^4 g/mol and Tg of 169 ℃ at the optimal conditions. This excellent activity can be ascribed to the presence of rich basic sites and specific basic strength on the surface of 0.4Ca/SBA-15.
基金supported by the National Natural Science Foundation of China (52173093)the Peking University Ge Li and Ning Zhao Life Science Research Fund for Young Scientists。
文摘Biodegradable polymers are a promising sustainable alternative to conventional petroleum-based polymers and have attracted recent extensive research interest due to their potential environmental friendliness and sustainability. Among them, aliphatic polyesters and polycarbonates are the most extensively studied ones. The metal-catalyzed ring-opening polymerization(ROP) of cyclic esters and ring-opening copolymerization(ROCOP) of epoxides with anhydrides or CO_(2) are often considered to be the classic and efficient methods to synthesize stereoregular polymers. Moreover, the versatile salen-type metal complexes have been used to prepare almost all types of biodegradable polymers with excellent stereoselectivity control. Hence, this review focuses on stereoselective synthesis of biodegradable polymers by salen-type metal catalysts developed in the last decade.Aliphatic polyesters from ROP of cyclic esters, ROCOP of epoxides with cyclic anhydrides, and carbonylative polymerization of epoxides, as well as aliphatic poly(thio)carbonate from ROCOP of epoxides with CO_(2) or COS are discussed in detail. This review highlights the polymerization mechanisms, catalyst characteristics, and factors controlling the stereoselectivity of each polymerization reaction, aiming to provide general rules for the future design of stereoselective catalysts.