A series of polymeric ionic liquids(PILs)used as effective heterogeneous catalysts for biodiesel production via esterification of free fatty acids(FFAs)were effectively prepared by the reaction of poly(ethylene imine)...A series of polymeric ionic liquids(PILs)used as effective heterogeneous catalysts for biodiesel production via esterification of free fatty acids(FFAs)were effectively prepared by the reaction of poly(ethylene imine)(PEI)polymers with different molecular weight and 1,3-propanesultone,followed by the further acidification with differential effective acids,i.e.H2SO4,CF3SO3H,CH3SO3H or p-toluenesulfonic acid(p-TSA).Ultrahigh acidity and catalytic performance were achieved and could be fine-tuned by simply adjusting the molecular weight of PEI and by further treatment of acids.Specifically,under the optimal conditions(i.e.reaction temperature was 70℃,reaction time was 2.0 h,catalyst dosage was 3.15%(mass),and alcohol/acid molar ratio was 14:1)acquired through the Box-BEHNKEN response surface methodology,a high oleic acid conversion of 98.42%could be obtained over the optimal PIL,PEI(70000)-PS-p-TSA.Additionally,our PILs also showed high generality for esterification of other FFAs,with general high conversion over 90%noted in each case even under much milder reaction conditions compared to other conventional catalysts.展开更多
基金the National Natural Science Foundation of China(21878054)Project on the Integration of Industry and Education of Fujian Province(2018Y4008)+3 种基金Science and Technology Project of Fujian Educational Committee(JAT190051)Fuzhou University Testing Fund of precious apparatus(2020T008)Research Initiation Funding of Fuzhou University(GXRC-19051)the Award Program for Minjiang Scholar Professorship。
文摘A series of polymeric ionic liquids(PILs)used as effective heterogeneous catalysts for biodiesel production via esterification of free fatty acids(FFAs)were effectively prepared by the reaction of poly(ethylene imine)(PEI)polymers with different molecular weight and 1,3-propanesultone,followed by the further acidification with differential effective acids,i.e.H2SO4,CF3SO3H,CH3SO3H or p-toluenesulfonic acid(p-TSA).Ultrahigh acidity and catalytic performance were achieved and could be fine-tuned by simply adjusting the molecular weight of PEI and by further treatment of acids.Specifically,under the optimal conditions(i.e.reaction temperature was 70℃,reaction time was 2.0 h,catalyst dosage was 3.15%(mass),and alcohol/acid molar ratio was 14:1)acquired through the Box-BEHNKEN response surface methodology,a high oleic acid conversion of 98.42%could be obtained over the optimal PIL,PEI(70000)-PS-p-TSA.Additionally,our PILs also showed high generality for esterification of other FFAs,with general high conversion over 90%noted in each case even under much milder reaction conditions compared to other conventional catalysts.
基金supported by the National Natural Science Foundation of China(Nos.51273176 and 51573159)the Fundamental Research Funds for the Central Universities(No.2016QNA4032),China