期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Manipulating Zn^(2+)solvation environment in poly(propylene glycol)-based aqueous Li^(+)/Zn^(2+)electrolytes for high-voltage hybrid ion batteries
1
作者 Hang Lu Sheng Zheng +2 位作者 Lu Wei Xiaodong Zhang Xin Guo 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期125-136,共12页
Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and en... Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and energy density.However,their working voltage and lifespan are limited by the decomposition of water and the growth of Zn dendrites.Herein,detrimental side reactions induced by the water reduction and the Zn dendrite growth are successfully suppressed by a poly(propylene glycol)(PPG)-based hybrid ion electrolyte[(1 m Zn(TFSI)2+10 m LiTFSI)in PPG/H2O].The addition of PPG in the electrolyte can not only enhance the bonding strength of hydrogen-bond in water but also tailor the solvation sheath of Zn2+as revealed by synchrotron X-rays.The participated solvation of PPG with Zn^(2+)can weaken Zn-H_(2)O interactions and redistribute Zn^(2+)flux on the surface of the Zn anode,thus inducing favorably even deposition of Zn.In addition,the decomposition of TFSI-contributes a ZnF_(2)-enriched solid electrolyte interface at the Zn anode to further prevent water decomposition and restrain Zn dendrites.The PPG-based electrolyte enables 2.1 V LiMnO_(2)//Zn batteries to deliver high specific capacities(121.7 mAh g^(-1)for a coin cell and 90 mAh g^(-1)for a pouch cell),and maintain 80%of the capacity over 700 cycles at 0.5 C,suggesting a promising pathway for highly reversible aqueous hybrid ion batteries. 展开更多
关键词 high voltage aqueous electrolyte hybrid ion battery molecular interaction poly(propylene glycol) zinc metal anode
下载PDF
Preparation and Electrocatalytic Activity of Polyaniline-poly(propylene oxide) 被引量:3
2
作者 MeiChaoLI ChunAnMA 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第4期551-553,共3页
A novel copolymer of polyaniline-poly(propylene oxide) (PAN-PPO) was prepared by cyclic voltammetry (CV) and characterized by FTIR and SEM. It showed good electroactivity for methanol oxidation in H2SO4 solution.
关键词 polyANILINE poly(propylene oxide) ELECTROCATALYSIS methanol.
下载PDF
Synthesis, Characterization and in vitro Degradation Properties of Poly(Propylene Fumarate-co-Propylene Sebacate) Networks 被引量:1
3
作者 张娜 杨德安 +1 位作者 蔡仲雨 常俊标 《Transactions of Tianjin University》 EI CAS 2007年第4期254-262,共9页
Poly(propylene fumarate-co-propylene sebacate) (P(PF-co-PS)) was crosslinked with Nvinyl pyrrolidone (N-VP) to form networks. It was investigated as biodegradable bone cement. In this paper, P(PF-co-PS) was ... Poly(propylene fumarate-co-propylene sebacate) (P(PF-co-PS)) was crosslinked with Nvinyl pyrrolidone (N-VP) to form networks. It was investigated as biodegradable bone cement. In this paper, P(PF-co-PS) was synthesized and characterized by ^1H-NMR, FTIR and GPC. The effects of the amount of sebacate segments in P(PF-co-PS) main chains and the quantity of N-vinyl pyrrolidone on the in vitro degradation of the polymer networks were examined. Cylindrical specimens were submerged in phosphate buffered saline (PBS) at 37 ℃ and the pH value of PBS is 7.4 for 10 weeks. The gravimetry and compressive mechanical properties were tested over the degradation period. Networks formed by P(PF-oo-PS)8020/N-VP exhibited higher weight loss and better mechanical properties when compared with poly(propylene fumarate)/N-VP networks. The mechanical properties of P(PF-co-PS)/N-VP can be maintained for a very long time, even for 70 days, the yield strength, fracture strength and compressive modulus are (51.78 ± 2.01) MPa, (52.331 ± 1.84) MPa and (957.78 ± 24.40) MPa, respectively. The results demonstrate that the compressive mechanical properties and degradation velocity can be modulated by the amount of crosslinking agents and sebacate segments along the main chains of copolymers. 展开更多
关键词 biodegradation in vitro degradation polyester polypropylene fumarate-co-propylene sebacate) N-vinyl pyrrolidone
下载PDF
聚碳酸亚丙酯/热塑性氧化淀粉的流变、形态和性能 被引量:3
4
作者 蒋果 徐景活 +2 位作者 冯健 黄汉雄 张水洞 《化工学报》 EI CAS CSCD 北大核心 2015年第7期2718-2724,共7页
采用熔融共混的方法制备了马来酸酐接枝聚碳酸亚丙酯(PPCMA)/热塑性淀粉(TPS)、PPCMA/热塑性氧化淀粉(TPOS)和PPCMA/DL-TPOS(铝酸酯预处理的TPOS)复合材料,研究淀粉的氧化以及偶联剂的加入对PPC复合材料流变、形态和性能的影响。加入淀... 采用熔融共混的方法制备了马来酸酐接枝聚碳酸亚丙酯(PPCMA)/热塑性淀粉(TPS)、PPCMA/热塑性氧化淀粉(TPOS)和PPCMA/DL-TPOS(铝酸酯预处理的TPOS)复合材料,研究淀粉的氧化以及偶联剂的加入对PPC复合材料流变、形态和性能的影响。加入淀粉后的PPC复合材料拉伸强度有较大提高,红外光谱结果显示淀粉和PPCMA之间形成了氢键作用,这可能是力学性能提高的主要原因;热塑性氧化淀粉与PPCMA基材的界面相容性提高,PPCMA/TPOS复合材料的力学性能、储能模量、损耗模量和复数黏度均高于PPCMA/TPS复合材料;铝酸酯对TPOS的预处理促进了TPOS在PPCMA中的分散,提高了复合材料的拉伸强度,在PPCMA/DL-TPOS体系中,当DL-TPOS含量为40%(质量分数)时拉伸强度达到最大值,与PPCMA相比,提高了4.6倍。 展开更多
关键词 聚碳酸亚丙酯 热塑性氧化淀粉 铝酸酯 复合材料 力学性能 流变性能 poly(propylene carbonate)
下载PDF
Biodegradable Foaming Material of Poly(butylene adipate-co-terephthalate)(PBAT)/Poly(propylene carbonate)(PPC) 被引量:13
5
作者 Han-Lin Tian Ze-Peng Wang +6 位作者 Shi-Ling Jia Hong-Wei Pan Li-Jing Han Jun-Jia Bian Ying Li Hui-Li Yang Hui-Liang Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第2期208-219,共12页
A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modif... A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modified by bis(tert-butyl dioxy isopropyl)benzene(BIBP)for chain extension,and then the extended PBAT(E-PBAT)was foamed with PPC using a twin(single)screw extruder.By analyzing the properties of the blends,we found that Young’s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC 50/50.The viscosity of the polymer has a critical influence on the formation of cells.Compared with neat PBAT(N-PBAT),the viscosity of E-PBAT increased by 3396 Pa·s and E-PBAT/PPC 50/50 increased by 8836 Pa·s.Meanwhile,the dynamic mechanical analysis(DMA)results showed that the storage modulus(E’)at room temperature increased from 538 MPa to 1650 MPa.The various phase morphologies(“sea-island”,“quasi-co-continuous”and“cocontinuous”)and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam.Therefore,through the analysis of phase morphology and foaming mechanism,we concluded that the E-PBAT/PPC 70/30 component has both excellent strength and the best foaming performance. 展开更多
关键词 poly(butylene adipate-co-terephthalate) poly(propylene carbonate) Phase structure Biodegradable foam Extrusion foaming
原文传递
Rheological, Thermal and Mechanical Properties of Biodegradable Poly(propylene carbonate)/Polylactide/Poly(1,2-propylene glycol adipate) Blown Films 被引量:9
6
作者 Yan-ping Hao Hui-li Yang +3 位作者 Gui-bao Zhang 张会良 Ge Gao Li-song Dong 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第12期1702-1712,共11页
Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film tech... Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging. 展开更多
关键词 polypropylene carbonate) polyLACTIDE PLASTICIZER Blown films.
原文传递
Biocompatibility evaluation of electrospun aligned poly(propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro 被引量:8
7
作者 WANG Yu ZHAO Zhe +7 位作者 ZHAO Binx ZHAO Bin QI Hong-xu PENG Jiang ZHANG Li XU Wen-jing HU Ping LU Shi-bi 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第15期2361-2366,共6页
Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environmen... Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environment for cell attachment and proliferation due to similarities of their physical properties to natural extracellular matrix. Poly(propylene carbonate) (PPC) nanofibrous scaffolds have been investigated for vascular tissue engineering. However, no reports exist of PPC nanofibrous scaffolds for nerve tissue engineering. This study aimed to evaluate the potential role of aligned and random PPC nanofibrous scaffolds as substrates for peripheral nerve tissue and cells in nerve tissue engineering. Methods Aligned and random PPC nanofibrous scaffolds were fabricated by electrospinning and their chemical characterization were carried out using scanning electron microscopy (SEM). Dorsal root ganglia (DRG) from Sprague-Dawley rats were cultured on the nanofibrous substrates for 7 days. Neurite outgrowth and Schwann-ceU migration from DRG were observed and quantified using immunocytochemistry and SEM. Schwann cells derived from rat sciatic nerves were cultured in electrospun PPC scaffold-extract fluid for 24, 48, 72 hours and 7 days. The viability of Schwann cells was evaluated by 3-[4,5-dimethyl(thiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (M]-F) assay. Results The diameter of aligned and random fibers ranged between 800 nm and 1200 nm, and the thickness of the films was approximately 10-20 IJm. Quantification of aligned fiber films revealed approximately 90% alignment of all fibers along the longitudinal axis. However, with random fiber films, the alignment of fibers was random through all angle bins. Rat DRG explants were grown on PPC nanofiber films for up to 1 week. On the aligned fiber films, the majority of neurite outgrowth and Schwann cell migration from the DRG extended unidirectionally, parallel to the aligned fibers. However, on the random fiber films, neurite outgrowth and Schwann cell migration were randomly distributed. A comparison of cumulative neurite lengths from cultured DRGs indicated that neurites grew faster on aligned PPC films ((2537.6±987.3) μm) than randomly-distributed fibers ((493.5±50.6) μm). The average distance of Schwann cell migration on aligned PPC nanofibrous films ((2803.5±943.6) μm) were significantly greater than those on random fibers ((625.3±47.8) pm). The viability of Schwann cells cultured in aligned PPC scaffold extract fluid was not significantly different from that in the plain DMEM/F12 medium at all time points after seeding. Conclusions The aligned PPC nanofibrous film, but not the randomly-oriented fibers, significantly enhanced peripheral nerve regeneration in vitro, indicating the substantial role of topographical cues in stimulating endogenous nerve repair mechanisms. Aligned PPC nanofibrous scaffolds may be a promising biomaterial for nerve regeneration. 展开更多
关键词 dorsal root ganglia ELECTROSPINNING nerve tissue engineering polypropylene carbonate) Schwann cell
原文传递
MISCIBILITY,CRYSTALLIZATION AND MECHANICAL PROPERTIES OF PPC/PBS BLENDS 被引量:8
8
作者 Hui-liang Zhang Xiao-hong Sun Qing-yong Chen Min-qiao Ren Zhi-hao Zhang Hong-fang Zhang Zhi-shen Mo 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2007年第6期589-597,共9页
In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile t... In this paper, melt blends of poly(propylene carbonate) (PPC) with poly(butylene succinate) (PBS) were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile testing, wide-angle X-ray diffraction (WAXD), polarized optical microscopy and thermogravimetric analysis (TGA). The results indicated that the glass transition temperature of PPC in the 90/10 PPC/PBS blend was decreased by about 11 K comparing with that of pure PPC. The presence of 10% PBS was partially miscible with PPC. The 90/10 PPC/PBS blend had better impact and tensile strength than those of the other PPC/PBS blends. The glass transition temperature of PPC in the 80/20, 70/30, and 60/40 PPC/PBS blends was improved by about 4.9 K, 4.2 K, and 13 K comparing with that of pure PPC, respectively; which indicated the immiscibility between PPC and PBS. The DSC results indicated that the crystallization of PBS became more difficult when the PPC content increased. The matrix of PPC hindered the crystallization process of PBS. While the content of PBS was above 20%, significant crystallization-induced phase separation was observed by polarized optical microscopy. It was found from the WAXD analysis that the crystal structure of PBS did not change, and the degree of crystallinity increased with increasing PBS content in the PPC/PBS blends. 展开更多
关键词 polypropylene carbonate) poly(butylene succinate) MISCIBILITY CRYSTALLIZATION Mechanical properties.
下载PDF
Sustainable Blends of Poly(propylene carbonate)and Stereocomplex Polylactide with Enhanced Rheological Properties and Heat Resistance 被引量:10
9
作者 Yi Li Yan-Cun Yu +2 位作者 Chang-Yu Han Xian-Hong Wang De-Xin Huang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第11期1267-1275,I0009,共10页
Sustainable blends of poly(propylene carbonate)(PPC)and stereocomplex polylactide(sc-PLA)were prepared by melt blending equimolar poly(L-lactic acid)(PLLA)and poly(D-lactide acid)(PDLA)with PPC to form sc-PLA crystals... Sustainable blends of poly(propylene carbonate)(PPC)and stereocomplex polylactide(sc-PLA)were prepared by melt blending equimolar poly(L-lactic acid)(PLLA)and poly(D-lactide acid)(PDLA)with PPC to form sc-PLA crystals in situ in the melt blending process.Differential seanning calorimetry analysis revealed that only sc-PLA,no homo-crystallization of PLLA or PDLA,formed in the PPC matrix as the sc-PLA con tent was more than 10 wt%.Very in triguingly,scan ning electronic microscopy observati on showed that sc-PLA was evenly dispersed in the PPC phase as spherical particles and the sizes of sc-PLA particles did not obviously increase with in creasing sc-PLA con tent.As a con seque nee,the rheological properties of PPC were greatly improved by incorporation of sc-PLA.When the sc-PLA con tent was 20 wt%,a percolati on n etwork structure was formed,and the blends showed solid-like behavior.The sc-PLA particles could reinforce the PPC matrix,especially at a temperature above the glass transition temperature of PPC.Moreover,the Vicat softening temperature of PPC/sc-PLA blends could be increased compared with that of neat PPC. 展开更多
关键词 SUSTAINABLE polymer blends poly(propylene carbonate) Stereocomplex polylactide
原文传递
Thermal,Mechanical and Rheological Properties of Biodegradable Poly(propylene carbonate) and Poly(butylene carbonate) Blends 被引量:6
10
作者 Dan-dan Wu Wu Li +4 位作者 Yan Zhao Yun-jiao Deng 张会良 Hui-xuan Zhang Li-song Dong 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第3期444-455,共12页
Poly(propylene carbonate) (PPC) was melt blended in a batch mixer with poly(butylene carbonate) (PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibi... Poly(propylene carbonate) (PPC) was melt blended in a batch mixer with poly(butylene carbonate) (PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC. 展开更多
关键词 BIODEGRADABLE polypropylene carbonate) poly(butylene carbonate) Blends
原文传递
Studies on Rheological, Thermal, and Mechanical Properties of Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly(propylene carbonate) Polyurethane Ternary Blends 被引量:4
11
作者 Ji-Li Zhao Hong-Wei Pan +4 位作者 Hui-Li Yang Jun-Jia Bian Hui-Liang Zhang Ge Gao Li-Song Dong 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2019年第12期1273-1282,I0007,共11页
Polylactide(PLA),methyl methacrylate-butadiene-styrene copolymer(MBS),and poly(propylene carbonate)polyurethane(PPCU)were blended and subjected to blown film process.The rheological,mechanical,morphological,thermal,an... Polylactide(PLA),methyl methacrylate-butadiene-styrene copolymer(MBS),and poly(propylene carbonate)polyurethane(PPCU)were blended and subjected to blown film process.The rheological,mechanical,morphological,thermal,and crystalline properties of the PLA/MBS/PPCU ternary blends and the mechanical properties of the resulting films were studied.Results of mechanical test showed that PPCU and MBS could synergistically toughen PLA.The impact strength of 50/10/40 PLA/MBS/PPCU blend(74.7 k J/m^2)was about 7.5 times higher than that of the neat PLA(10.8 k J/m^2),and the elongation at break of 50/10/40 PLA/MBS/PPCU blend(276.5%)was higher by about 45 times that of PLA(6.2%).The tear strength of PLA/MBS/PPCU films was 20 k N/m higher than that of PLA,and the elongation at break(MD/TD)of 50/10/40 PLA/MBS/PPCU films was 271.1%/222.3%,whereas that of PLA was only 2.7%/3.0%.POM observations displayed that the density of spherulite nucleation increased and the size of crystalline particles decreased with the addition of MBS.With increasing PPCU content from 5%to 20%,the density of spherulite nucleation increased and the size of crystalline particles decreased continuously,but the nucleation density of spherulites was slightly lowered with increasing PPCU content from 30%to 40%.The PLA/MBS/PPCU films exhibited excellent mechanical properties,which expanded the application range of these biodegradable films. 展开更多
关键词 Biodegradable polyLACTIDE poly(propylene carbonate)polyurethane Methyl methacrylate-butadiene-styrene copolymer Films
原文传递
Compatibilization of PBT/PP Blends by Adding Side-chain Liquid Crystalline Ionomer with Quaternary Pyridinium Groups 被引量:3
12
作者 XU Xin-yu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第1期140-144,共5页
A side-chain liquid crystalline ionomer(SLCI) was synthesized by grafting copolymerization of 4-(4-ethoxybenzoyloxy)-4'-allyloxybiphenyl and N-allyl-pyridium bromide on polymethylhydrosiloxane. The SLCI was blend... A side-chain liquid crystalline ionomer(SLCI) was synthesized by grafting copolymerization of 4-(4-ethoxybenzoyloxy)-4'-allyloxybiphenyl and N-allyl-pyridium bromide on polymethylhydrosiloxane. The SLCI was blended with polypropylene(PP) and polybutylene terephthalate(PBT) by melt mixing. The thermal behavior, liquid crystalline properties, morphological structure, and mechanical properties of the blends were investigated by differential scanning calorimetry(DSC), polarizing optical microscopy(POM), scanning electron microscopy(SEM), and tensile measurement. When a proper amount of SLCI was added, fine configurations were formed in the PBT/PP/SLCI blend system, and the mechanical properties were improved due to improved adhesion at the interface. When excess SLCI was added, an inhomogeneous structure resulted, which caused the mechanical properties to deteriorate. 展开更多
关键词 poly(butylent terephthalate) polypropylene Liquid crystalline ionomer COMPATIBILIZATION
下载PDF
Preparation of Chlorinated Poly(propylene carbonate) and Its Distinguished Properties 被引量:2
13
作者 Xi-hua Cui Jing Jin +2 位作者 Jie Cui 赵桂艳 姜伟 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第9期1086-1096,共11页
Poly(propylene carbonate) (PPC), the copolymerization product of carbon dioxide and propylene oxide, was chlorinated for the first time in our laboratory. Nuclear magnetic resonance (NMR) spectroscopy and ion ch... Poly(propylene carbonate) (PPC), the copolymerization product of carbon dioxide and propylene oxide, was chlorinated for the first time in our laboratory. Nuclear magnetic resonance (NMR) spectroscopy and ion chromatography test showed that chlorine atoms were successfully introduced onto the polymer chains of PPC. We named this newborn polymer material as chlorinated poly(propylene carbonate) (CPPC). It is worth noting that the reaction conditions of the chlorination of PPC were quite mild, which could be easily and simply realized at industrial level. What is more important is that CPPC possessed many more distinguished properties in solubility, wettability, adhesiveness, and gas barrier compared with PPC. For example, the bonding strength of CPPC as thermal adhesive is nearly four times higher than that of PPC for wood, stainless steel and glass. The oxygen permeability coefficient of CPPC exhibits a decrease of 33% compared with that of PPC. Moreover, CPPC is quite stable in air, whereas it could be well biodegraded in soil compared with PPC. These results indicated that CPPC could be widely used in the fields of coating, adhesive, barrier materials and so on, which could greatly promote the development of PPC industry. 展开更多
关键词 polypropylene carbonate) CHLORINATION BIODEGRADABILITY ADHESIVE Gas barrier
原文传递
Stereocomplexation and Mechanical Properties of Polylactide-bpoly(propylene glycol)-b-polylactide Blend Films: Effects of Polylactide Block Length and Blend Ratio 被引量:2
14
作者 Dutchanee Pholharn Onanong Cheerarot Yodthong Baimark 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第11期1391-1401,共11页
In the present work, poly(propylene glycol) (PPG) was block copolymerized to form polylactide-poly(propylene glycol)-polylactide (PL-PPG-PL) triblock copolymers for preparing flexible stereocomplex PL (scPL)... In the present work, poly(propylene glycol) (PPG) was block copolymerized to form polylactide-poly(propylene glycol)-polylactide (PL-PPG-PL) triblock copolymers for preparing flexible stereocomplex PL (scPL) blend films. The scPL blend films were prepared by solution blending of poly(L-lactide)-PPG-poly(L-lactide) (PLL-PPG-PLL) and poly(D-lactide)- PPG-poly(D-lactide) (PDL-PPG-PDL) triblock copolymers before film casting. The influences of PL end-block lengths (2 ×10^4 and 4×10^4 g/tool) and blend ratios (75/25, 50/50 and 25/75 W/W) on the stereocomplexation and mechanical properties of the blend films were evaluated. From DSC and WAXD results, the 50/50 blend films had complete stereocomplexation. Phase separation between the scPL and PPG phases was not observed from their SEM images. The tensile stress and elongation at break increased with the sterecomplex crystallinities and PL end-block lengths. The PPG middle-blocks enhanced elongation at break of the scPL films. The results showed that the PL-PPG-PL triblock structures did not affect stereocomplexation of the PLL/PDL block blending. In conclusion, the phase compatibility and flexibility of the scPL films were improved by PPG block copolymerization. 展开更多
关键词 STEREOCOMPLEX polyLACTIDE polypropylene glycol) Block copolymers Mechanical properties
原文传递
Toughening of Poly(propylene carbonate) by Carbon Dioxide Copolymer Poly(urethane-amine) via Hydrogen Bonding Interaction 被引量:2
15
作者 顾林 Qing-yun Wu 余海斌 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第6期838-849,共12页
A carbon dioxide copolymer poly(urethane-amine) (PUA) was blended with poly(propylene carbonate) (PPC) in order to improve the toughness and flexibility of PPC without sacrificing other mechanical properties. ... A carbon dioxide copolymer poly(urethane-amine) (PUA) was blended with poly(propylene carbonate) (PPC) in order to improve the toughness and flexibility of PPC without sacrificing other mechanical properties. Compared with pure PPC, the PPC/PUA blend with 5 wt% PUA loading showed a 400% increase in elongation at break, whilst the corresponding yielding strength remained as high as 33.5 MPa and Young's modulus showed slightly decrease. The intermolecular hydrogen bonding interaction in PPC/PUA blends was comfirmed by FTIR, 2D IR and XPS spectra analysis, and finely dispersed particulate structure of PUA in PPC was observed in the SEM images, which provided good evidence for the toughening mechanism of PPC. 展开更多
关键词 Carbon dioxide copolymer Blend TOUGHENING polypropylene carbonate) poly(urethane-amine).
原文传递
SYNTHESIS OF EXFOLIATED ISOTACTIC POLYPROPYLENE/FUNCTIONAL ALKYL-TRIPHENYLPHOSPHONIUM-MODIFIED CLAY NANOCOMPOSITES BY IN SITU POLYMERIZATION 被引量:2
16
作者 Kai Du 贺爱华 +1 位作者 Fu-yong Bi Charles C.Han 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第11期1501-1508,共8页
Diphenyl (4-hydroxyphenyl) hexadecyl phosphonium bromide (POH) -modified montmorillonite (POHMMT) was used to prepare a novel TiC14/MgC12/POHMMT compound catalyst and exfoliated iPP/POHMMT nanocomposites were pr... Diphenyl (4-hydroxyphenyl) hexadecyl phosphonium bromide (POH) -modified montmorillonite (POHMMT) was used to prepare a novel TiC14/MgC12/POHMMT compound catalyst and exfoliated iPP/POHMMT nanocomposites were prepared by the in situ intercalative polymerization of propylene with the TiC14/MgC12/POHMMT compound catalyst. The POH surfactants don't change the catalytic characteristic of the Z-N catalyst and the obtained PP presents high isotacticity, normal molecular weight and molecular weight distribution. The WAXD, SAXS and TEM results demonstrate the highly exfoliated iPP/POHMMT nanocomposites were produced by the in situ polymerization with this novel catalyst, while the intercalated iPP/Na+MMT nanocomposites were produced with the TiC14/MgC12/Na+MMT compound catalyst. Through this approach, in situ propylene polymerization can actually take place between the silicate layers and lead not only to PP with high isotacticity and molecular weight, but also to highly exfoliated PP nanocomposites. 展开更多
关键词 CLAY NANOCOMPOSITES polypropylene (PP) Ziegler-Natta polymerization.
原文传递
Biodegradable Poly(propylene carbonate)/Layered Double Hydroxide Composite Films with Enhanced Gas Barrier and Mechanical Properties 被引量:10
17
作者 Gao-feng Li Wen-han Luo +2 位作者 Min Xiao 王拴紧 孟跃中 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第1期13-22,共10页
Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the ... Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics. 展开更多
关键词 polypropylene carbonate) Layered double hydroxide Gas barrier properties Biodegradable composite Packaging
原文传递
Thermal, Mechanical and Rheological Properties of Eco-friendly Poly(propylene carbonate)/Poly(1,2-propylene succinate) Blends 被引量:1
18
作者 Dan-dan Wu Wu Li +5 位作者 Hong-yu Liang San-rong Liu Jian-yong Fang 张会良 Hui-xuan Zhang Li-song Dong 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第7期914-922,共9页
In order to improve the flexibility of poly(propylene carbonate) (PPC), poly(1,2-propylene succinate) (PPSu) was used to plasticize PPC in a batch mixer. The effects of PPSu on the miscibility, thermal stabili... In order to improve the flexibility of poly(propylene carbonate) (PPC), poly(1,2-propylene succinate) (PPSu) was used to plasticize PPC in a batch mixer. The effects of PPSu on the miscibility, thermal stability, mechanical and theological properties of the blends were investigated. PPC was partially miscible with PPSu. It was demonstrated that PPSu decreased the glass transition temperature and melt viscosity of PPC, as shown in the DSC and rheological curves. With the increase in PPSu content, the PPC/PPSu blends showed decreased tensile strength, however, the elongation at break was increased to 1100% for the 70/30 PPC/PPSu blend. The introduction of PPSu provided an efficient and novel plasticization method to extend the application area of PPC. 展开更多
关键词 Biodegradable polypropylene carbonate) poly(1 2-propylene succinate) MISCIBILITY Blends.
原文传递
Thermal,Rheological and Mechanical Properties of Biodegradable Poly(propylene carbonate)/Epoxidized Soybean Oil Blends 被引量:1
19
作者 Ling Zhao Shi-Ling Jia +5 位作者 Ze-Peng Wang Yun-Jing Chen Jun-Jia Bian Li-Jing Han Hui-Liang Zhang Li-Song Dong 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第12期1572-1580,共9页
Biodegradable poly(propylene carbonate)(PPC)/epoxidized soybean oil(ESO)blends with different component ratios were prepared by melt blending to improve the performance of PPC.The phase morphology,thermal properties,r... Biodegradable poly(propylene carbonate)(PPC)/epoxidized soybean oil(ESO)blends with different component ratios were prepared by melt blending to improve the performance of PPC.The phase morphology,thermal properties,rheological properties and mechanical properties of the blends were in vestigated in detail.SEM exami nation revealed good in terfacial adhesi on betwee n PPC matrix and ESO.According to DSC and DMA,as the content of ESO increased,the glass transition temperature of the PPC component increased,indicating that there was a strong in terfacial in teracti on between the PPC matrix and ESO.The in terfacial in teraction may be caused by rin g-opening reaction between the hydroxyl end groups of PPC and the epoxy groups of ESO,which restricted the chain movement of PPC matrix.The disappearanee of the epoxy groups in FTIR indicated that the in terfacial in teracti on betwee n the two phases was due to the rin g-openi ng reactio n betwee n PPC and ESO.With the addition of ESO,the thermal stabilities were enhanced.With the increasing ESO content,the modulus gradually decreased.However,the stre ngth at yield,the strength at break and the elon gation at break were in creased for the PPC/ESO blends,suggest!ng that the enhancement of the strength and toughness of PPC was achieved by the incorporation of ESO.The rheological measurement revealed that the complex viscosity,storage modulus and loss modulus of PPC were in creased with the increasi ng ESO content at low freque ncy,which indicated that the addition of ESO enhanced the melt strength of PPC in stead of plasticizi ng PPC. 展开更多
关键词 poly(propylene carbonate) Epoxy soybean oil Compatibility Mechanical properties
原文传递
Fully Biodegradable Poly(lactic acid)/Poly(propylene carbonate)Shape Memory Materials with Low Recovery Temperature Based on in situ Compatibilization by Dicumyl Peroxide 被引量:4
20
作者 Sheng-Xue Qin Cui-Xiang Yu +2 位作者 Xue-Yang Chen Hai-Ping Zhou Li-Fen Zhao 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第6期783-790,共8页
Fully biodegradable blends with low shape memory recovery temperature were obtained based on poly(lactic acid)(PLA) and poly(propylene carbonate)(PPC). By virtue of their similar chemical structures, in situ c... Fully biodegradable blends with low shape memory recovery temperature were obtained based on poly(lactic acid)(PLA) and poly(propylene carbonate)(PPC). By virtue of their similar chemical structures, in situ cross-linking reaction initiated by dicumyl peroxide(DCP) between PLA and PPC chains was realized in PLA/PPC blends. Therefore, the compatibility between PLA and PPC was increased, which obviously changed the phase structures and increased the elongation at break of the blends. The compatibilized blends had a recovery performance at 45 °C. Combining the changes of phase structures, the mechanism of the shape memory was discussed. It was demonstrated that in situ compatibilization by dicumyl peroxide was effective to obtain eco-friendly PLA/PPC blends with good mechanical and shape memory properties. 展开更多
关键词 polylactide polypropylene carbonate) Dicumyl peroxide Compatibilization Shape memory
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部