The authors developed a nitrate ion-selective electrode(ISE) based on poly(vinyl chloride)(PVC) membrane with methyltrioctylammonium nitrate as a carrier and 1-decanol as a plasticizer.The performance of the nit...The authors developed a nitrate ion-selective electrode(ISE) based on poly(vinyl chloride)(PVC) membrane with methyltrioctylammonium nitrate as a carrier and 1-decanol as a plasticizer.The performance of the nitrate-sensitive membranes was optimized by tuning the composition of components.The electrode exhibits a linear response with a Nernstian slope of(52±1.0) mV per decade for the nitrate ion concentration ranging from 5.8×10-5 mol/L to 1.0 mol/L.The electrode can be used to detect a low concentration of nitrate ions down to 3×10-5 mol/L in a pH range of 2.1―11.5 without any compensation.The advantage of the electrode includes simple preparation,short response time and good repeatability.The detection performance of the novel electrode on nitrate ions has been tested for water samples.展开更多
To effectively improve the performance and expand the applications of polymers, molecular dynamics(MD) simulations with the COMPASS force field have been applied to predict the miscibility, glass transition temperatur...To effectively improve the performance and expand the applications of polymers, molecular dynamics(MD) simulations with the COMPASS force field have been applied to predict the miscibility, glass transition temperature(Tg), and mechanical properties of poly(vinyl chloride)/dioctyl phthalate(PVC/DOP) blends. The solubility parameter values obtained are in good agreement with the reference data and the little difference(|Δδ|< 2.0 MPa0.5) between two components indicates that PVC/DOP is a miscible system. Tg is predicted by the slope of the free volume and density versus temperature simulation data based on density and free volume theory which is agree well with the experimental data. In addition, the analyses of mechanical properties results indicate that the values of Young’s modulus(E), bulk modulus(K), and shear modulus(G) decrease with the addition of DOP, demonstrating that the rigidity of material is weakened and the ductility is improved. The mechanical properties can also be effectively improved by increasing the temperature, which may provide a more flexible mixture, with lower E, K, G but an increased ductility.展开更多
Mechanical properties of poly (vinyl chloride) film doped with micro rare earth neodymium are improved notably. Its tensile strength increases from 36 1 to 52 9 MPa, while its flexibility is increased significantly by...Mechanical properties of poly (vinyl chloride) film doped with micro rare earth neodymium are improved notably. Its tensile strength increases from 36 1 to 52 9 MPa, while its flexibility is increased significantly by adding active silanol extracted from water glass. Both ultraviolet and microwave crosslinking result in samples with satisfactory mechanical properties, and the flexibility of the microwave crosslinked samples is much higher than that of the ultraviolet crosslinked ones.展开更多
基金Supported by the Project of Wuxi Pollution Prevention Funding Agency,China(No.2008-1)
文摘The authors developed a nitrate ion-selective electrode(ISE) based on poly(vinyl chloride)(PVC) membrane with methyltrioctylammonium nitrate as a carrier and 1-decanol as a plasticizer.The performance of the nitrate-sensitive membranes was optimized by tuning the composition of components.The electrode exhibits a linear response with a Nernstian slope of(52±1.0) mV per decade for the nitrate ion concentration ranging from 5.8×10-5 mol/L to 1.0 mol/L.The electrode can be used to detect a low concentration of nitrate ions down to 3×10-5 mol/L in a pH range of 2.1―11.5 without any compensation.The advantage of the electrode includes simple preparation,short response time and good repeatability.The detection performance of the novel electrode on nitrate ions has been tested for water samples.
基金financially supported by the Fundamental Research Funds for the Central Universities
文摘To effectively improve the performance and expand the applications of polymers, molecular dynamics(MD) simulations with the COMPASS force field have been applied to predict the miscibility, glass transition temperature(Tg), and mechanical properties of poly(vinyl chloride)/dioctyl phthalate(PVC/DOP) blends. The solubility parameter values obtained are in good agreement with the reference data and the little difference(|Δδ|< 2.0 MPa0.5) between two components indicates that PVC/DOP is a miscible system. Tg is predicted by the slope of the free volume and density versus temperature simulation data based on density and free volume theory which is agree well with the experimental data. In addition, the analyses of mechanical properties results indicate that the values of Young’s modulus(E), bulk modulus(K), and shear modulus(G) decrease with the addition of DOP, demonstrating that the rigidity of material is weakened and the ductility is improved. The mechanical properties can also be effectively improved by increasing the temperature, which may provide a more flexible mixture, with lower E, K, G but an increased ductility.
文摘Mechanical properties of poly (vinyl chloride) film doped with micro rare earth neodymium are improved notably. Its tensile strength increases from 36 1 to 52 9 MPa, while its flexibility is increased significantly by adding active silanol extracted from water glass. Both ultraviolet and microwave crosslinking result in samples with satisfactory mechanical properties, and the flexibility of the microwave crosslinked samples is much higher than that of the ultraviolet crosslinked ones.