期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fabrication of Multi-layered Composite Scaffolds by Bi-directional Electrospinning Method 被引量:2
1
作者 WU Tong HUANG Chen +2 位作者 CHEN Jian-feng LIU Wei MO Xiu-mei 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期625-629,共5页
A multi-layered composite scaffolds consisting of poly ( L- ne) ( P (LLA-CL) ), collagen (COL) and chitosan (CS) were fabricated by a bi-directional electrospinnlng method. Synthetic P (LLA-CL) was used as... A multi-layered composite scaffolds consisting of poly ( L- ne) ( P (LLA-CL) ), collagen (COL) and chitosan (CS) were fabricated by a bi-directional electrospinnlng method. Synthetic P (LLA-CL) was used as the middle layer to enhance the strength, while natural COL/CS blending (9: 1, v/v) was used as the bioactive surfaces (inner and outer layers ) to improve the biocompatibility. Each three transitional layers were set between inner/outer layer and middle layer for delamination resistance. Scanning electron microscopy (SEM) was used to observe the fiber morphology. The Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR) spectra, X- ray diffraction (XRD) and thermogravimetry (TG) tests were used to analyze the physical properties of the scaffolds. The results showed that the modified clectrospinning method bad no negative effect on the components, crystal structure and thermostability of the scaffolds, but could effectively combine the mechanical property of synthetic material and biocompatibility of natural materials. Such method could be applied to the fabrication of composite scaffolds for vascular, skin. and nerve tissue engineering. 展开更多
关键词 ELECTROSpINNING poly ( L.lactide-co-ε-caprolactone )( p(lla-cl) ) COLLAGEN CHITOSAN composite NANOFIBERS
下载PDF
Fabrication of a Bi-layer Tubular Scaffold Consisted of a Dense Nanofibrous Inner Layer and a Porous Nanoyarn Outer Layer for Vascular Tissue Engineering
2
作者 CHEN Jian-feng LIU Wei +4 位作者 WU Tong LI Da-wei ZHANG Jian-guang WANG Nan-ping MO Xiu-mei 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期718-722,共5页
Recent years, it has attracted more attentions to increase the porosity and pore size of nanofibrous scaffolds to provide the for the cells to grow into the small-diameter vascular grafts. In this study, a novel bi-la... Recent years, it has attracted more attentions to increase the porosity and pore size of nanofibrous scaffolds to provide the for the cells to grow into the small-diameter vascular grafts. In this study, a novel bi-layer tubular scaffold with an inner layer and an outer layer was fabricated. The inner layer was random collagen/poly ( L-lactide-co-caprolactone ) I P ( LLA- CL) ] nanofibrous mat fabricated by conventional electrospinning and the outer layer was aligned collagen/P (LLA-CL) nanoyarns prepared by a dynamic liquid dectrospinning method. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical structure. Scanning electron microscopy ( SEM ) was employed to observe the morphology of the layers and the cross- sectioned bi-layer tubular scaffold. A liquid displacement method was employed to measure the porosities of the inner and outer layers. Stress-strain curves were obtained to evaluate the mechanical properties of the two different layers and the bi-layer membrane. The diameters of the nanofibers and the nanoyarns were (480 ± 197 ) nm and ( 19.66 ± 4.05 ) μm, respectively. The outer layer had a significantly higher porosity and a larger pore size than those of the inner layer. Furthermore, the bi-layer membrane showed a good mechanical property which was suitable as small-diameter vascular graft. The results indicated that the bi-layer tubular scaffold had a great potential application in small vascular tissue engineering. 展开更多
关键词 nanoyarn poly ( L-lactide-co-caprolactone ) [ p ( lla-cl ) ] BI-LAYER tubular scaffold pOROUS structure small vascular TISSUEENGINEERING
下载PDF
Fabrication and Characterization of Dual-layer Multichannel Nerve Guidance Conduit
3
作者 孙彬彬 吴桐 +4 位作者 王娟 布托阿齐 袁柳 李丹丹 莫秀梅 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期167-170,共4页
Nowadays, muifichannel nerve guidance conduit (NGC) was designed by mimicking the architecture of nerve fascicles, and it was used to reduce dispersion of regenerating axons within the NGC lumen. In this paper, gela... Nowadays, muifichannel nerve guidance conduit (NGC) was designed by mimicking the architecture of nerve fascicles, and it was used to reduce dispersion of regenerating axons within the NGC lumen. In this paper, gelatin was used to prepare multichannel inner layer of NGC by freeze-drying, and poly ( L-lactic add-co-ε- caprolactone) (P(LLA-CL)) was used to fabricate nanofiber outer layer of NGC by electrospinning. The morphology of dual-layer mtlltichannel NGC was observed by scanning electron microscopy (SEM). In vitro degradation experiment of the NGC demonstrated that the inner layer of NGC had the faster degradation rate than the outer layer of NGC. tell viability assay indicated that Schwann cells (SCs) showed better proliferation on dual-layer multichannel NGC than hollow NGC, because the multichannel structure introduced contact guidance for direct cell migration. Therefore, it was suggested that the dual-layer multichannel NGC had the potential for nerve lissue regeneration. 展开更多
关键词 poly(L-lactic acid-co-ε-caprolactone) (plla-cl)) GELATIN electrospinniag MULTICHANNEL nerve tissue engineering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部