Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl orthosilicate (TEOS) on the surface of P...Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl orthosilicate (TEOS) on the surface of PNIPAM template at 50 ~C. The PNIPAM template can be easily removed by water at room temperature so that SiO2 hollow microspheres were finally obtained. The transmission electron microscope and scanning electron microscope observations indicated that SiO2 hollow microspheres with an average diameter of 150 nm can be formed only if there are enough concentration of PNIPAM and TEOS, and the hy- drolysis time of TEOS. FTIR analysis showed that part of PNIPAM remained on the wall of SiO2 because of the strong interaction between PNIPAM and silica. This work provides a clean and efficient way to prepare hollow microspheres.展开更多
Novel colloidal processing using thermosensitive poly(N-isopropylacrylamide) (PNIPAM) as a coagulating agent has beendeveloped to prepare complex-shaped ceramic components. In this work, the properties of PNIPAM a...Novel colloidal processing using thermosensitive poly(N-isopropylacrylamide) (PNIPAM) as a coagulating agent has beendeveloped to prepare complex-shaped ceramic components. In this work, the properties of PNIPAM aqueous solutions and therheological behavior of ZnO suspensions with PNIPAM were investigated. The results show that the PNIPAM solutions exhibitobvious thermosensitivity and its transition temperature is around 32℃. When the temperature is above 40℃ (Tc, the criticaltransition temperature of thermosensitive suspension), the 50% ZnO (volume fraction) suspension with 8 mg/mL PNIPAM has asharp increase in viscosity and reaches up to 11.49 Pa·s at 50℃, displaying strong elasticity. The main reasons are the increase ofeffective volume fraction attributed to precipitation of PNIPAM segments and the flocculation between ZnO powder particles. Inaddition, the maximum solid loading (volume fraction) at 20 ℃ is higher than that at 40℃, which proves that the phase transition ofPNIPAM can induce the flocculation of suspension.展开更多
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide), PEG-b-(PNIPAM)2, were successfully synthesized through atom transfer radical polymerization (ATRP). A difunctional macr...Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide), PEG-b-(PNIPAM)2, were successfully synthesized through atom transfer radical polymerization (ATRP). A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the ATRP ofN-isopropylacrylamide (NIPAM) at 30℃ with CuCl/Me6TREN as a catalyst system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography (GPC) and ^1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI 〈 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry (DSC). As a result, the phase transition temperature of PEG45-b-(PNIPAM55)2 is higher than that of PNIPAM, however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular composition and architecture on the phase transition.展开更多
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes were densely grafted onto silica surface via surface-initiated atom transfer radical polymeriza- tion (SI-ATRP). The grafting reaction started from ...Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes were densely grafted onto silica surface via surface-initiated atom transfer radical polymeriza- tion (SI-ATRP). The grafting reaction started from the surfaces of 2-bromoisobutyrate- functionalized silica particles in 2-propanol aqueous solution at ambient temperature using CuCIICuCI21N, N,N',N',N”.pentamethyldiethylenetriamine (PMDETA) as the catalytic system. Based on thermogravimetric analysis (TGA) results, the grafting amount and grafting density of PNIPAM chains on the surface of silica were calculated to be 1.29 mg/ m^2 and 0.0215 chains/nm^2, respectively. The gel permeation chromatography (GPC) result showed the relatively narrow molecular weight distribution (MwlMn= 1.21) of the grafted PNIPAAm. The modified silica particles were applied as high-performance liquid chromatography (HPLC) packing materials to successfully separate three aromatic compounds using water as mobile phase by changing column temperature. Temperature- dependent hydrophilic/hydrophobic property alteration of PNIPAAm brushes grafted on silica particles was determined with chromatographic interaction between stationary phase and analytes. Retention time was prolonged and resolution was improved with increasing temperature. Baseline separation with high resolution at relatively low temperatures was observed, demonstrating dense PNIPAAm brushes were grafted on silica surfaces.展开更多
With the excellent biocompatibility and osteo- conductivity, nano-hydroxyapatite (nHA) has shown significant prospect in the biomedical applications. Con- trolling the size, crystallinity and surface properties of n...With the excellent biocompatibility and osteo- conductivity, nano-hydroxyapatite (nHA) has shown significant prospect in the biomedical applications. Con- trolling the size, crystallinity and surface properties of nHA crystals is a critical challenge in the design of HA based biomaterials. With the graft copolymer of chitosan and poly(N-isopropylacrylamide) in coil and globule states as a template respectively, a novel composite from chitosan-g-poly(N-isopropylacrylamide) and nano-hydro- xyapatite (CS-g-PNIPAM/nHA) was prepared via co- precipitation. Zeta potential analysis, thermogravimetric analysis and X-ray diffraction were used to identify the formation mechanism of the CS-g-PNIPAM/nHA compo- site and its morphology was observed by transmission electron microscopy. The results suggested that the physical aggregation states of the template polymer could induce or control the size, crystallinity and morphology of HA crystals in the CS-g-PNIPAM/nHA composite. The CS-g-PNIPAM/nHA composite was then introduced to chitosan-gelatin (CS-Gel) polyelectronic complex and the cytocompatibility of the resulting CS- Gel/composite hybrid film was evaluated. This hybrid film was proved to be favorable for the proliferation of MC 3T3-E1 cells. Therefore, the CS-g-PNIPAM/nHA compo- site is a potential biomaterial in bone tissue engineering.展开更多
Poly(N-isopropylacrylamide)-based hydrogel was prepared under microwave irradiation The hydrogel thus prepared, comparing with that prepared by thermal heating method, exhibits faster swelling and shrinking kinetics...Poly(N-isopropylacrylamide)-based hydrogel was prepared under microwave irradiation The hydrogel thus prepared, comparing with that prepared by thermal heating method, exhibits faster swelling and shrinking kinetics. The improved responsive properties are due to the more heterogeneous and porous networks formed under microwave irradiation.展开更多
A novel thermo-responsive hydrogel column, featured with both ends of linear poly(N- isopropylacrylarnide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains, was reported. The laterally sandwich-typed ...A novel thermo-responsive hydrogel column, featured with both ends of linear poly(N- isopropylacrylarnide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains, was reported. The laterally sandwich-typed hydrogel columns were fabricated by radical polymerization in a three-step process using a method of ice-melting synthesis. The initiating path, morphology and thermoresponsive characteristics of the prepared hydrogel columns were experimentally studied. The results show that the hydrogel column obtained by the initiator inside part has more quick swelling and deswelling rates responsing to temperature cycling than other hydrogels owing to linear PNIPAM chains to form supermacroporous structure. The proposed hydrogel structure provide a new mode of the phase transition behavior for thermo-sensitive "smart" or "intelligent" monodisperse micro-actuators, which is highly attractive for targeting drug delivery systems, chemical separations, and sensors and so on.展开更多
Interpenetrating polymer network (IPN) composed of silk sericin (SS) and poly(N-isopropylacrylamide) (PNIPAAm) was prepared. The morphology of the IPNs, in which the SS phase was stained with ammonium cuprate,...Interpenetrating polymer network (IPN) composed of silk sericin (SS) and poly(N-isopropylacrylamide) (PNIPAAm) was prepared. The morphology of the IPNs, in which the SS phase was stained with ammonium cuprate, was examined with TEM and a relative homogeneous distribution of the two polymers was exhibited. The swelling behavior of the IPN hydrogels showed both temperature and pH dependences.展开更多
A novel poly(N-isopropylacrylamide)-based sandwich-typed hydrogel, which was featured with both ends of linear poly(N-isopropylaerylamide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains, was succe...A novel poly(N-isopropylacrylamide)-based sandwich-typed hydrogel, which was featured with both ends of linear poly(N-isopropylaerylamide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains, was successfully prepared in a three-step process by a method of sequential synthesis. The proposed hydrogel displays faster and hydration/dehydration dynamic response to temperature cycling owing to linear PNIPAM chains to form big-pore structure. This work may lead to high attraction for targeting drug delivery systems, polymeric pump, sensors and so on.展开更多
The effect of graft yield on both the thermo-responsive hydraulicpermeability and the therrno-responsive diffusional permeability through porous membranes withplasma-grafted poly(N-isopropylacrylamide) (PNIPAM) gates ...The effect of graft yield on both the thermo-responsive hydraulicpermeability and the therrno-responsive diffusional permeability through porous membranes withplasma-grafted poly(N-isopropylacrylamide) (PNIPAM) gates was investigated. Both thermo-responsiveflat membranes and core-shell microcapsule membranes with a wide range of graft yield of PNIPAM wereprepared using a plasma-graft pore-filling polymerization method. The grafted PNIPAM was formedhomogeneously throughout the entire thickness of both the flat polyethylene membranes and themicrocapsule polyamide membranes. Both the hydraulic permeability and the diffusional permeabilitywere heavily dependent on the PNIPAM graft yield. With increasing the graft yield, the hydraulicpermeability (water flux) decreases rapidly at 25℃ because of the decrease of the pore size;however, the water flux at 40℃ increases firstly to a peak because of the increase ofhydrophobicity of the pore surface, and then decreases and finally tends to zero because of the poresize becoming smaller and smaller. For the diffusional permeability, the temperature showsdifferent effects on the diffusional permeability coefficients of solutes across the membranes. Whenthe graft yield was low, the diffusional coefficient of solute across the membrane was higher attemperature above the lower critical solution temperature (LCST) than that below the LCST; however,when the graft yield was high, the diffusional coefficient was lower at temperature above the LCSTthan that below the LCST. It is very important to choose or design a proper graft yield of PNIPAMfor obtaining a desired thermo-responsive 'on/off' hydraulic or diffusional permeability.展开更多
Linear copolymers from N-isopropylacrylamide (NIPA), acrylic acid (AA) and diacetone acrylamide (DAA) have been prepared. The effect of composition, ionic strength and pH on their lower critical solution tempera...Linear copolymers from N-isopropylacrylamide (NIPA), acrylic acid (AA) and diacetone acrylamide (DAA) have been prepared. The effect of composition, ionic strength and pH on their lower critical solution temperature (LCST) has been investigated.展开更多
Poly(N-isopropylacrylamide-co-N-vinylpyrrolidone) [P(NIPAM-co-NVP)] copolymers with different content of N-vinylpyrrolidone (NVP) were synthesized, and reversible aggregation kinetics of the copolymers in aqueou...Poly(N-isopropylacrylamide-co-N-vinylpyrrolidone) [P(NIPAM-co-NVP)] copolymers with different content of N-vinylpyrrolidone (NVP) were synthesized, and reversible aggregation kinetics of the copolymers in aqueous solutions was investigated with elastic light scattering (ELS) spectra. The results indicated that the apparent activation energy of aggregation process during heating and dissociation process during cooling increased with the NVP content increasing. The phase transition temperature also increased as the content of NVP increased, suggesting that the hydrophilic nature of NVP strongly affected the phase behavior of the copolymer solutions. The higher the content of NVP, the higher the temperature required to break the balance between the hydrophilic and hydrophobie interaction. Besides, during heating and cooling process, the phase transition hysteresis of P(NIPAM-co-NVP) chains decreased when the hydrophilic comonomer increased.展开更多
Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi...Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
The thermosensitive poly ( N-isopropylacrylamide ) (PNIPAAm) and poly (N-isopropylacrylamide-co-acrylamide) [ poly (NIPAAm-co-AAm) ] hydrogels with different acrylamide molar percentage are prepared by radiati...The thermosensitive poly ( N-isopropylacrylamide ) (PNIPAAm) and poly (N-isopropylacrylamide-co-acrylamide) [ poly (NIPAAm-co-AAm) ] hydrogels with different acrylamide molar percentage are prepared by radiation polymerization using Co^60 γ-ray. Their swelling equilibrium data in the media of deionized water, NaCl aqueous solutions and different pH buffer solutions are determined. It appears that lower critical solution temperature (LCST) of the hydrogels will drop with the increase of ionic strength and increase with the rising of acrylamide content, A semi-empirical formula is set up with the experimental results. Moreover, it also indicates that this copolymer is pH-sensitive, which is similar to the homopolymer of PNIPAAm.展开更多
The adsorption of linear poly(N-isopropylacrylamide) (PNIPAM) chains on surfactant-free polystyrene (PS) nanoparticles was used as a model system to study the hydrophobic adsorption of polymer on the surface, because ...The adsorption of linear poly(N-isopropylacrylamide) (PNIPAM) chains on surfactant-free polystyrene (PS) nanoparticles was used as a model system to study the hydrophobic adsorption of polymer on the surface, because the hydrophobility of PNIPAM can be continuously varied by a small temperature change. The adsorption was investigated by a combination of static and dynamic laser light scattering (LLS) measurements. In static LLS, the absolute excess scattered light intensity led to the amount of PNIPAM adsorbed on the surface. In dynamic LLS, the hydrodynamic thickness of the adsorbed PNIPAM layer was accurately measured. For a given particle concentration, the adsorption increases as the PNIPAM concentration and the incubation temperature increase. The average density of the adsorbed PNIPAM layer is reciprocally proportional to the number of the PNIPAM chains on the surface, revealing a simple scaling of the chain density distribution. The adsorption follows the Langmuir's isotherm. The enthalpy change estimated from the adsorption at 25 degrees C and 30 degrees C is slightly positive, indicating that the adsorption involves the coil-to-globule transition of the chains on the surface.展开更多
Temperature sensitive imprinted poly(N-isopropylacrylamide) nanocomposite gels were syntheses via in-situ, free radical crosslinking polymerization of corresponding monomer in nano-sized silica and five different conc...Temperature sensitive imprinted poly(N-isopropylacrylamide) nanocomposite gels were syntheses via in-situ, free radical crosslinking polymerization of corresponding monomer in nano-sized silica and five different concentrations of myoglobin solution by using the molecular imprinting method. Mb adsorption from five different concentrations of Mb solutions was investigated by two types of nanocomposite gel systems prepared by non-imprinted and imprinted methods. Nanocomposite gels imprinted with Mb showed higher adsorption capacity and specificity for Mb than nanocomposite gels prepared by the usual procedure. The highest Mb adsorption was observed via the imprinted nanocomposite gels with 12.5% Mb. In addition, selectivity studies were also performed by using two reference molecules as fibrinogen and hemoglobin. The imprinted nanocomposite gels had higher adsorption capacity for Mb than the non-imprinted gels and also exhibited good selectivity for Mb and high adsorption rate depending on the number of Mb sized cavities.展开更多
A novel nanofiber composite poly(N-isopropylacrylamide)(PNIPAAm)/polyvinyl pyrrolidone(PVP)was successfully prepared by electrospinning.Analogous medicated fibers loaded with ketoprofen(KET)as a model drug were prepar...A novel nanofiber composite poly(N-isopropylacrylamide)(PNIPAAm)/polyvinyl pyrrolidone(PVP)was successfully prepared by electrospinning.Analogous medicated fibers loaded with ketoprofen(KET)as a model drug were prepared.X-ray diffraction(XRD)demonstrated that the drug was presented in the fibers with an amorphous form.Both scanning and transmission electron microscopy showed that the fibers had an even diameter and smooth surface,and no phase separation was observed.The KET loaded nanofibers did not affect the morphology of the fibers,and no drug aggregation was separated from the polymer fibers.Water contact angle measurements proved that the PNIPAAm/PVP fibers switched from hydrophilic to hydrophobic when the temperature increased the lower critical solution temperature of 32℃.In vitro drug release studies were also undertaken and the result indicated that the PNIPAAm/PVP blend nanofiber presented the properties of the two polymers,having temperature-sensitive systems with sustained release properties.In addition,MTT assay demonstrated that the nanofiber film was non-toxic and suitable for cell growth.Thus,the nanofiber can be used as thermoresponsive carriers for sustained release of poor water soluble drugs.展开更多
Two narrowly-distributed poly(N-isopropylacrylamide)(PNIPAM) samples were prepared via atom transfer radical polymerization (ATRP) with a novel dansyl functionalized initiator. The other end of the PNIPAM was function...Two narrowly-distributed poly(N-isopropylacrylamide)(PNIPAM) samples were prepared via atom transfer radical polymerization (ATRP) with a novel dansyl functionalized initiator. The other end of the PNIPAM was functionalized by dabcyl group via click reaction. From the static fluorescence measurements, the fluorescence intensity of dansyl group and energy transfer efficiency between dansyl and dabcyl groups increased when the temperature increased from 36 °C to 45 °C, indicating that the microenvironment surrounding dansyl became hydrophobic and the distance between dansyl and dabcyl decreased. The kinetics of the conformational change of the dye-labeled PNIPAM was studied by a home-made laser-induced temperature jump device with fluorescent measurement. Our results revealed that the characteristic transition time was 3.8 and 5.8 ms for PNIPAM with degrees of polymerization of 85 and 142, respectively, indicating that the characteristic transition time was related to the chain length. Besides, characteristic transition time for the change of the energy transfer efficiency was 2.9 ms for PNIPAM with the degree of polymerization of 85, suggesting that the energy transfer efficiency change was faster than the fluorescence intensity change of dansyl group.展开更多
文摘Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl orthosilicate (TEOS) on the surface of PNIPAM template at 50 ~C. The PNIPAM template can be easily removed by water at room temperature so that SiO2 hollow microspheres were finally obtained. The transmission electron microscope and scanning electron microscope observations indicated that SiO2 hollow microspheres with an average diameter of 150 nm can be formed only if there are enough concentration of PNIPAM and TEOS, and the hy- drolysis time of TEOS. FTIR analysis showed that part of PNIPAM remained on the wall of SiO2 because of the strong interaction between PNIPAM and silica. This work provides a clean and efficient way to prepare hollow microspheres.
基金Project(51202296)supported by the National Natural Science Foundation of ChinaProject(20120162120006)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Novel colloidal processing using thermosensitive poly(N-isopropylacrylamide) (PNIPAM) as a coagulating agent has beendeveloped to prepare complex-shaped ceramic components. In this work, the properties of PNIPAM aqueous solutions and therheological behavior of ZnO suspensions with PNIPAM were investigated. The results show that the PNIPAM solutions exhibitobvious thermosensitivity and its transition temperature is around 32℃. When the temperature is above 40℃ (Tc, the criticaltransition temperature of thermosensitive suspension), the 50% ZnO (volume fraction) suspension with 8 mg/mL PNIPAM has asharp increase in viscosity and reaches up to 11.49 Pa·s at 50℃, displaying strong elasticity. The main reasons are the increase ofeffective volume fraction attributed to precipitation of PNIPAM segments and the flocculation between ZnO powder particles. Inaddition, the maximum solid loading (volume fraction) at 20 ℃ is higher than that at 40℃, which proves that the phase transition ofPNIPAM can induce the flocculation of suspension.
基金support from the National Natural Science Foundation of China(No. 20134020)the Visiting Scholar Project of Shandong Province of China(No.20081001)the Science Research Fund of Shandong Jiaotong University of China(No.Z200802)
文摘Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide), PEG-b-(PNIPAM)2, were successfully synthesized through atom transfer radical polymerization (ATRP). A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the ATRP ofN-isopropylacrylamide (NIPAM) at 30℃ with CuCl/Me6TREN as a catalyst system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography (GPC) and ^1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI 〈 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry (DSC). As a result, the phase transition temperature of PEG45-b-(PNIPAM55)2 is higher than that of PNIPAM, however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular composition and architecture on the phase transition.
文摘Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes were densely grafted onto silica surface via surface-initiated atom transfer radical polymeriza- tion (SI-ATRP). The grafting reaction started from the surfaces of 2-bromoisobutyrate- functionalized silica particles in 2-propanol aqueous solution at ambient temperature using CuCIICuCI21N, N,N',N',N”.pentamethyldiethylenetriamine (PMDETA) as the catalytic system. Based on thermogravimetric analysis (TGA) results, the grafting amount and grafting density of PNIPAM chains on the surface of silica were calculated to be 1.29 mg/ m^2 and 0.0215 chains/nm^2, respectively. The gel permeation chromatography (GPC) result showed the relatively narrow molecular weight distribution (MwlMn= 1.21) of the grafted PNIPAAm. The modified silica particles were applied as high-performance liquid chromatography (HPLC) packing materials to successfully separate three aromatic compounds using water as mobile phase by changing column temperature. Temperature- dependent hydrophilic/hydrophobic property alteration of PNIPAAm brushes grafted on silica particles was determined with chromatographic interaction between stationary phase and analytes. Retention time was prolonged and resolution was improved with increasing temperature. Baseline separation with high resolution at relatively low temperatures was observed, demonstrating dense PNIPAAm brushes were grafted on silica surfaces.
文摘With the excellent biocompatibility and osteo- conductivity, nano-hydroxyapatite (nHA) has shown significant prospect in the biomedical applications. Con- trolling the size, crystallinity and surface properties of nHA crystals is a critical challenge in the design of HA based biomaterials. With the graft copolymer of chitosan and poly(N-isopropylacrylamide) in coil and globule states as a template respectively, a novel composite from chitosan-g-poly(N-isopropylacrylamide) and nano-hydro- xyapatite (CS-g-PNIPAM/nHA) was prepared via co- precipitation. Zeta potential analysis, thermogravimetric analysis and X-ray diffraction were used to identify the formation mechanism of the CS-g-PNIPAM/nHA compo- site and its morphology was observed by transmission electron microscopy. The results suggested that the physical aggregation states of the template polymer could induce or control the size, crystallinity and morphology of HA crystals in the CS-g-PNIPAM/nHA composite. The CS-g-PNIPAM/nHA composite was then introduced to chitosan-gelatin (CS-Gel) polyelectronic complex and the cytocompatibility of the resulting CS- Gel/composite hybrid film was evaluated. This hybrid film was proved to be favorable for the proliferation of MC 3T3-E1 cells. Therefore, the CS-g-PNIPAM/nHA compo- site is a potential biomaterial in bone tissue engineering.
基金the National Natural Science Foundation of China (No. 20274032) the Ministry of Education+1 种基金 the 973 Project of China (G1999064703) Nhwa Pharmaceutical Corporation.
文摘Poly(N-isopropylacrylamide)-based hydrogel was prepared under microwave irradiation The hydrogel thus prepared, comparing with that prepared by thermal heating method, exhibits faster swelling and shrinking kinetics. The improved responsive properties are due to the more heterogeneous and porous networks formed under microwave irradiation.
基金the National Natural Science Foundation of China (No.20976202)the Natural Science Foundation of Hubei Province (No.2009CDB161)
文摘A novel thermo-responsive hydrogel column, featured with both ends of linear poly(N- isopropylacrylarnide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains, was reported. The laterally sandwich-typed hydrogel columns were fabricated by radical polymerization in a three-step process using a method of ice-melting synthesis. The initiating path, morphology and thermoresponsive characteristics of the prepared hydrogel columns were experimentally studied. The results show that the hydrogel column obtained by the initiator inside part has more quick swelling and deswelling rates responsing to temperature cycling than other hydrogels owing to linear PNIPAM chains to form supermacroporous structure. The proposed hydrogel structure provide a new mode of the phase transition behavior for thermo-sensitive "smart" or "intelligent" monodisperse micro-actuators, which is highly attractive for targeting drug delivery systems, chemical separations, and sensors and so on.
基金financially supported by the National Natural Science Foundation of China(Grant No.20474055,60373038).
文摘Interpenetrating polymer network (IPN) composed of silk sericin (SS) and poly(N-isopropylacrylamide) (PNIPAAm) was prepared. The morphology of the IPNs, in which the SS phase was stained with ammonium cuprate, was examined with TEM and a relative homogeneous distribution of the two polymers was exhibited. The swelling behavior of the IPN hydrogels showed both temperature and pH dependences.
基金Funded by the National Natural Science Foundation of China (20976202)the Natural Science Foundation of Hubei Province (2009CDB161)
文摘A novel poly(N-isopropylacrylamide)-based sandwich-typed hydrogel, which was featured with both ends of linear poly(N-isopropylaerylamide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains, was successfully prepared in a three-step process by a method of sequential synthesis. The proposed hydrogel displays faster and hydration/dehydration dynamic response to temperature cycling owing to linear PNIPAM chains to form big-pore structure. This work may lead to high attraction for targeting drug delivery systems, polymeric pump, sensors and so on.
基金Supported by the National Natural Science Foundation of China(No.29876022).
文摘The effect of graft yield on both the thermo-responsive hydraulicpermeability and the therrno-responsive diffusional permeability through porous membranes withplasma-grafted poly(N-isopropylacrylamide) (PNIPAM) gates was investigated. Both thermo-responsiveflat membranes and core-shell microcapsule membranes with a wide range of graft yield of PNIPAM wereprepared using a plasma-graft pore-filling polymerization method. The grafted PNIPAM was formedhomogeneously throughout the entire thickness of both the flat polyethylene membranes and themicrocapsule polyamide membranes. Both the hydraulic permeability and the diffusional permeabilitywere heavily dependent on the PNIPAM graft yield. With increasing the graft yield, the hydraulicpermeability (water flux) decreases rapidly at 25℃ because of the decrease of the pore size;however, the water flux at 40℃ increases firstly to a peak because of the increase ofhydrophobicity of the pore surface, and then decreases and finally tends to zero because of the poresize becoming smaller and smaller. For the diffusional permeability, the temperature showsdifferent effects on the diffusional permeability coefficients of solutes across the membranes. Whenthe graft yield was low, the diffusional coefficient of solute across the membrane was higher attemperature above the lower critical solution temperature (LCST) than that below the LCST; however,when the graft yield was high, the diffusional coefficient was lower at temperature above the LCSTthan that below the LCST. It is very important to choose or design a proper graft yield of PNIPAMfor obtaining a desired thermo-responsive 'on/off' hydraulic or diffusional permeability.
文摘Linear copolymers from N-isopropylacrylamide (NIPA), acrylic acid (AA) and diacetone acrylamide (DAA) have been prepared. The effect of composition, ionic strength and pH on their lower critical solution temperature (LCST) has been investigated.
基金Funded by the National Natural Science Foundation of China(50973129,51273048)the National Natural Science Foundation of Guangdong Province(S2012010009743)
文摘Poly(N-isopropylacrylamide-co-N-vinylpyrrolidone) [P(NIPAM-co-NVP)] copolymers with different content of N-vinylpyrrolidone (NVP) were synthesized, and reversible aggregation kinetics of the copolymers in aqueous solutions was investigated with elastic light scattering (ELS) spectra. The results indicated that the apparent activation energy of aggregation process during heating and dissociation process during cooling increased with the NVP content increasing. The phase transition temperature also increased as the content of NVP increased, suggesting that the hydrophilic nature of NVP strongly affected the phase behavior of the copolymer solutions. The higher the content of NVP, the higher the temperature required to break the balance between the hydrophilic and hydrophobie interaction. Besides, during heating and cooling process, the phase transition hysteresis of P(NIPAM-co-NVP) chains decreased when the hydrophilic comonomer increased.
基金supported by National Natural Science Foundation of China(Grant No.U1930113),ChinaNational Natural Science Foundation of China(52072036)
文摘Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金Project Supported by Science Foundation of Shanghai MunicipalCommission of Science and Technology (Grant No .02DJ14030)
文摘The thermosensitive poly ( N-isopropylacrylamide ) (PNIPAAm) and poly (N-isopropylacrylamide-co-acrylamide) [ poly (NIPAAm-co-AAm) ] hydrogels with different acrylamide molar percentage are prepared by radiation polymerization using Co^60 γ-ray. Their swelling equilibrium data in the media of deionized water, NaCl aqueous solutions and different pH buffer solutions are determined. It appears that lower critical solution temperature (LCST) of the hydrogels will drop with the increase of ionic strength and increase with the rising of acrylamide content, A semi-empirical formula is set up with the experimental results. Moreover, it also indicates that this copolymer is pH-sensitive, which is similar to the homopolymer of PNIPAAm.
文摘The adsorption of linear poly(N-isopropylacrylamide) (PNIPAM) chains on surfactant-free polystyrene (PS) nanoparticles was used as a model system to study the hydrophobic adsorption of polymer on the surface, because the hydrophobility of PNIPAM can be continuously varied by a small temperature change. The adsorption was investigated by a combination of static and dynamic laser light scattering (LLS) measurements. In static LLS, the absolute excess scattered light intensity led to the amount of PNIPAM adsorbed on the surface. In dynamic LLS, the hydrodynamic thickness of the adsorbed PNIPAM layer was accurately measured. For a given particle concentration, the adsorption increases as the PNIPAM concentration and the incubation temperature increase. The average density of the adsorbed PNIPAM layer is reciprocally proportional to the number of the PNIPAM chains on the surface, revealing a simple scaling of the chain density distribution. The adsorption follows the Langmuir's isotherm. The enthalpy change estimated from the adsorption at 25 degrees C and 30 degrees C is slightly positive, indicating that the adsorption involves the coil-to-globule transition of the chains on the surface.
文摘Temperature sensitive imprinted poly(N-isopropylacrylamide) nanocomposite gels were syntheses via in-situ, free radical crosslinking polymerization of corresponding monomer in nano-sized silica and five different concentrations of myoglobin solution by using the molecular imprinting method. Mb adsorption from five different concentrations of Mb solutions was investigated by two types of nanocomposite gel systems prepared by non-imprinted and imprinted methods. Nanocomposite gels imprinted with Mb showed higher adsorption capacity and specificity for Mb than nanocomposite gels prepared by the usual procedure. The highest Mb adsorption was observed via the imprinted nanocomposite gels with 12.5% Mb. In addition, selectivity studies were also performed by using two reference molecules as fibrinogen and hemoglobin. The imprinted nanocomposite gels had higher adsorption capacity for Mb than the non-imprinted gels and also exhibited good selectivity for Mb and high adsorption rate depending on the number of Mb sized cavities.
基金Science and Technology Commission of Shanghai Municipality,China(No.16410723700)"111 Project"Biomedical Textile Materials Science and Technology,China(No.B07024)UK-China Joint Laboratory for Therapeutic Textiles Based at Donghua University
文摘A novel nanofiber composite poly(N-isopropylacrylamide)(PNIPAAm)/polyvinyl pyrrolidone(PVP)was successfully prepared by electrospinning.Analogous medicated fibers loaded with ketoprofen(KET)as a model drug were prepared.X-ray diffraction(XRD)demonstrated that the drug was presented in the fibers with an amorphous form.Both scanning and transmission electron microscopy showed that the fibers had an even diameter and smooth surface,and no phase separation was observed.The KET loaded nanofibers did not affect the morphology of the fibers,and no drug aggregation was separated from the polymer fibers.Water contact angle measurements proved that the PNIPAAm/PVP fibers switched from hydrophilic to hydrophobic when the temperature increased the lower critical solution temperature of 32℃.In vitro drug release studies were also undertaken and the result indicated that the PNIPAAm/PVP blend nanofiber presented the properties of the two polymers,having temperature-sensitive systems with sustained release properties.In addition,MTT assay demonstrated that the nanofiber film was non-toxic and suitable for cell growth.Thus,the nanofiber can be used as thermoresponsive carriers for sustained release of poor water soluble drugs.
基金supported by the National Natural Science Foundation of China(No.21674107 and No.21274140)the Fundamental Research Funds for the Central Universities(No.WK2340000066)
文摘Two narrowly-distributed poly(N-isopropylacrylamide)(PNIPAM) samples were prepared via atom transfer radical polymerization (ATRP) with a novel dansyl functionalized initiator. The other end of the PNIPAM was functionalized by dabcyl group via click reaction. From the static fluorescence measurements, the fluorescence intensity of dansyl group and energy transfer efficiency between dansyl and dabcyl groups increased when the temperature increased from 36 °C to 45 °C, indicating that the microenvironment surrounding dansyl became hydrophobic and the distance between dansyl and dabcyl decreased. The kinetics of the conformational change of the dye-labeled PNIPAM was studied by a home-made laser-induced temperature jump device with fluorescent measurement. Our results revealed that the characteristic transition time was 3.8 and 5.8 ms for PNIPAM with degrees of polymerization of 85 and 142, respectively, indicating that the characteristic transition time was related to the chain length. Besides, characteristic transition time for the change of the energy transfer efficiency was 2.9 ms for PNIPAM with the degree of polymerization of 85, suggesting that the energy transfer efficiency change was faster than the fluorescence intensity change of dansyl group.