Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acryla...Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).展开更多
Hydrogel is considered as an important material in our world nowadays as it is used in many important and significant applications such as in tissue engineering and agriculture. There are hundreds of types of such mat...Hydrogel is considered as an important material in our world nowadays as it is used in many important and significant applications such as in tissue engineering and agriculture. There are hundreds of types of such materials, where most of them can be easily prepared. The main objective of this work is to prepare one of the hydrogel types which could be very useful in the agriculture of deserts where plants in dry places require water in order to grow up. There are many places around the world where raining occurs only once or twice a year. There are also places where it does not rain at all. Therefore, hydrogels are required in order to absorb water in large quantities either during raining or irrigation instead of escaping to underground and then eject them to the roots of plants over time as the plants require watering. In this research a hydrogel based on acryl amide, Poly 2-Acrylamide-2-Methyl-1-Propane Sulphonic Acid, (PAMPS) was prepared by using different percentages of a suitable cross-linking agent, Methylene-bis-Acrylamide. The cross-linker content is very important factor affects the rate and amount of absorbed water. The highest amount of absorbed water at 25°C was observed by using 0.6% cross-linking agent based on monomer mass. The temperature of absorbed water and its pH value are also essential factors that affect the rate and the amount of absorbed water and were investigated in this work. The highest amount of absorbed water was recorded at pH = 12 and at 60°C. The amount and the rate of water absorbed by Sodium Polyacrylate Hydrogel were also investigated at 25°C. The agriculture applications of hydrogel based on Sodium Polyacrylate were examined using Fenugreek seeds implanting.展开更多
Wound healing dressing is increasingly needed in clinical owing to the large quantity of skin damage annually.Excessive reactive oxygen species(ROS)produced through internal or external environmental influences can le...Wound healing dressing is increasingly needed in clinical owing to the large quantity of skin damage annually.Excessive reactive oxygen species(ROS)produced through internal or external environmental influences can lead to lipid peroxidation,protein denaturation,and even DNA damage,and ultimately have harmful effects on cells.Aiming to sufficiently contact with the wound microenvironment and scavenge ROS,superabsorbent poly(acrylic acid)and antioxidant poly(ester amide)(PAA/PEA)hybrid hydrogel has been developed to enhance wound healing.The physical and chemical properties of hybrid hydrogels were studied by Fourier-transform infrared(FTIR)absorption spectrum,compression,swelling,degradation,etc.Besides,the antioxidant properties of hybrid hydrogels can be investigated through the free radical scavenging experiment,and corresponding antioxidant indicators have been tested at the cellular level.Hybrid hydrogel scaffolds supported the proliferation of human umbilical vein endothelial cells and fibroblasts,as well as accelerated angiogenesis and skin regeneration in wounds.The healing properties of wounds in vivo were further assessed on mouse skin wounds.Results showed that PAA/PEA hybrid hydrogel scaffolds significantly accelerated the wound healing process through enhancing granulation formation and re-epithelialization.In summary,these superabsorbent and antioxidative hybrid hydrogels could be served as an excellent wound dressing for full-thickness wound healing.展开更多
文摘Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).
文摘Hydrogel is considered as an important material in our world nowadays as it is used in many important and significant applications such as in tissue engineering and agriculture. There are hundreds of types of such materials, where most of them can be easily prepared. The main objective of this work is to prepare one of the hydrogel types which could be very useful in the agriculture of deserts where plants in dry places require water in order to grow up. There are many places around the world where raining occurs only once or twice a year. There are also places where it does not rain at all. Therefore, hydrogels are required in order to absorb water in large quantities either during raining or irrigation instead of escaping to underground and then eject them to the roots of plants over time as the plants require watering. In this research a hydrogel based on acryl amide, Poly 2-Acrylamide-2-Methyl-1-Propane Sulphonic Acid, (PAMPS) was prepared by using different percentages of a suitable cross-linking agent, Methylene-bis-Acrylamide. The cross-linker content is very important factor affects the rate and amount of absorbed water. The highest amount of absorbed water at 25°C was observed by using 0.6% cross-linking agent based on monomer mass. The temperature of absorbed water and its pH value are also essential factors that affect the rate and the amount of absorbed water and were investigated in this work. The highest amount of absorbed water was recorded at pH = 12 and at 60°C. The amount and the rate of water absorbed by Sodium Polyacrylate Hydrogel were also investigated at 25°C. The agriculture applications of hydrogel based on Sodium Polyacrylate were examined using Fenugreek seeds implanting.
基金This work sincerely acknowledges the support from the Science and Technology Planning Project of Shenzhen(JCYJ20190813153409172)Chunhui Project from Education Ministry of China(Z2016125)+1 种基金Sichuan Science and Technology Program(2019YFG0251,2019JDTD0024)Young scholars for reserve talents of Xihua University.
文摘Wound healing dressing is increasingly needed in clinical owing to the large quantity of skin damage annually.Excessive reactive oxygen species(ROS)produced through internal or external environmental influences can lead to lipid peroxidation,protein denaturation,and even DNA damage,and ultimately have harmful effects on cells.Aiming to sufficiently contact with the wound microenvironment and scavenge ROS,superabsorbent poly(acrylic acid)and antioxidant poly(ester amide)(PAA/PEA)hybrid hydrogel has been developed to enhance wound healing.The physical and chemical properties of hybrid hydrogels were studied by Fourier-transform infrared(FTIR)absorption spectrum,compression,swelling,degradation,etc.Besides,the antioxidant properties of hybrid hydrogels can be investigated through the free radical scavenging experiment,and corresponding antioxidant indicators have been tested at the cellular level.Hybrid hydrogel scaffolds supported the proliferation of human umbilical vein endothelial cells and fibroblasts,as well as accelerated angiogenesis and skin regeneration in wounds.The healing properties of wounds in vivo were further assessed on mouse skin wounds.Results showed that PAA/PEA hybrid hydrogel scaffolds significantly accelerated the wound healing process through enhancing granulation formation and re-epithelialization.In summary,these superabsorbent and antioxidative hybrid hydrogels could be served as an excellent wound dressing for full-thickness wound healing.