Rare earth (Nd, Y, La, Dy) stearates have been synthesized and used as single component catalysts for the polycondensation of dimethyl terephthalate, adipic acid and 1,4-butanediol for the first time preparing biode...Rare earth (Nd, Y, La, Dy) stearates have been synthesized and used as single component catalysts for the polycondensation of dimethyl terephthalate, adipic acid and 1,4-butanediol for the first time preparing biodegradable poly(butylene adipate-co-terephthalate) (PBAT) with high molecular weight, The microstructures of PBAT were characterized by ^1H NMR spectra. The PBAT exhibits good mechanical properties such as high tensile strength (ca. 20 MPa) and long break elongation (〉700%).展开更多
Poly(butylene adipate-co-terephthalate)(PBAT)is a promising biodegradable flexible polymer but suffers from slow crystallization rate,making it less attractive for some applications like the injection-molded products ...Poly(butylene adipate-co-terephthalate)(PBAT)is a promising biodegradable flexible polymer but suffers from slow crystallization rate,making it less attractive for some applications like the injection-molded products in comparison with low-density polyethylene(LDPE).This work aimed to accelerate the crystallization of PBAT by adding a self-assembly nucleating agent octamethylenedicarboxylic dibenzoylhydrazide(OMBH).PBAT/OMBH composites with various OMBH contents(0 wt%,0.5 wt%,0.7 wt%,1 wt%,2 wt%,3 wt%and 5 wt%)were prepared through melt-mixing.The effect of OMBH on the crystallization behavior,morphologies and mechanical properties of PBAT was investigated.The highest nucleation efficiency value of 59.6%was achieved for PBAT with 0.7 wt%OMBH,much higher than that of 22.7%for PBAT with 0.7 wt%talc.Atomic force microscopy results showed that OMBH formed fine fibers and induced the formation of transcrystalline layers of PBAT.Fourier transform infrared spectroscopy(FTIR)combined with two-dimensional correlation spectra suggested that the intermolecular dipole-dipole N—H…O=C interactions but not hydrogen bond between OMBH and PBAT promoted the crystallization of PBAT in the initial period of crystallization.The presence of OMBH did not change the crystal form of PBAT but had positive contribution in enhancing its crystallinity and mechanical properties.This work is essential for preparing PBAT with high crystallization rate,enhancing its potential applications in injection-molded products.展开更多
In order to improve the wettability and biocompatibility of the poly (butylene terephthalate) non-woven (PBTNW), the method of surface modification is used to graft copolymerization of chitosan (CS) onto the PBT...In order to improve the wettability and biocompatibility of the poly (butylene terephthalate) non-woven (PBTNW), the method of surface modification is used to graft copolymerization of chitosan (CS) onto the PBTNW under alkylpolyglycoside (APG) inducing. The product is thoroughly characterized with the Fourier transform infrared spectroscopy (FrIR), the electron spectroscopy for chemical analysis (ESCA), the thermogravimetric (TG) and the scanning electron microscopy (SEM). It is found that chitosan is successfully grafted onto PBTNW. In addition, the water contact angles, hemolysis tests and cytotoxicity evaluation tests show an improvement in wettability and biocompatihility as a result of graft copolymerization of chitosan. So the CS-grafted PBTNW exhibits greater superiority than the original PBTNW. The CS-grafted PBTNW can be a candidate for blood filter materials and other medical applications.展开更多
The degradation of thermoplastic starch blend in the presence of commerciala-amylase and unpurified amylase of microbial origin was investigated.The blends consisting of thermoplastic starch and poly(butylene succinat...The degradation of thermoplastic starch blend in the presence of commerciala-amylase and unpurified amylase of microbial origin was investigated.The blends consisting of thermoplastic starch and poly(butylene succinate)have potential use in packaging applications thus,it is essential to establish susceptibility to degradation.Molar mass loss,gravimetric weight loss,and molecular structure were evaluated.The changes in the surface were observed with scanning electron microscopy.It was confirmed that there was a significant difference in gravimetric weight loss between the blends degraded in two different solutions.Unpurified enzymes of microbial origin,produced by Rhizopus oryzae cultures decomposed analyzed materials more efficiently than purified commercial ones.Moreover,it was proved that in applied conditions,the molar mass of PBS fraction did not change significantly.展开更多
A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical ...A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA.The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%.Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy(SEM)images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction(XRD)measurement.The melt flow index(MFI)of the blends was higher as the amount of PLA-PBS increased,indicating that the block copolymer did improve the mobility of the PLA chains.Moreover,tensile tests revealed that PLA with greater PLA-PBS copolymer exhibited higher elongation at break and it reached the maximum at 8 wt%of PLA-PBS in PLA,which was around 6 times higher than that of pure PLA.Furthermore,the glass transition temperature,measured by differential scanning calorimetry(DSC),markedly decreased with an increasing amount of the copolymer as it decreased from 61.2℃ for pure PLA to 41.3℃when it was blended with 10 wt%PLA-PBS copolymer.Therefore,the PLA-PBS copolymer was shown to be a promising plasticizer for fully biobased and toughened PLA.展开更多
Poly ( butylene succinate ) ( PBS ), poly ( butylene terephthalate) (PBT) and poly (butylene succirmte-coterephthalate) (PBST)s were synthesized from dimethyl succinate and/or dimethyl terephthalate reacti...Poly ( butylene succinate ) ( PBS ), poly ( butylene terephthalate) (PBT) and poly (butylene succirmte-coterephthalate) (PBST)s were synthesized from dimethyl succinate and/or dimethyl terephthalate reacting with 1,4- butanediol through a process of transesterification/ polycondmsation in the presence of a high effective catalyst and characterized by means of GPC and DSC. The investigation was mainly focused on the influence of content of terephthalate units on the molecular weight and thermal properties of resulting polymers. It is revealed that the melting temperature and crystallinity of synthesized polymers decrease first with the increase of terephthalate units, then shift to rise gradually by DSC measurements. The results of Flory equation suggest sequence structure of PBSTs is random.展开更多
The concern with environmental preservation is a very current and relevant topic. Regarding polymers, the search for potentially ecofriendly matters has been the subject of scientific research. In this context, this w...The concern with environmental preservation is a very current and relevant topic. Regarding polymers, the search for potentially ecofriendly matters has been the subject of scientific research. In this context, this work aimed to study the effect of adding nanocellulose (nCE) with 1, 3, and 5 wt.% on poly(butylene adipate-co-butylene terephthalate) (PBAT). Thermal, structural, relaxometric, and rheological assessments were carried out. Quantitative evaluation of PBAT copolymer by high field NMR revealed 56.4 and 43.6 m.% of the butylene adipate and butylene terephthalate segments, respectively. WAXD measurement on the deconvoluted diffraction patterns identified that nCE was a mixing of Cellulose I and Cellulose II polymorph structures. At any composition, nanocellulose interfered with the PBAT crystallisation process. Also, a series of new PBAT crystallographic planes appeared as a function of nanocellulose content. PBAT hydrogen molecular relaxation varied randomly with nanocellulose content and had a strong effect on the hydrogen relaxation. PBAT cold crystallisation and melting temperatures (T<sub>cc</sub> and T<sub>m</sub>) were almost unchangeable. Although T<sub>cc</sub> did not change during polymer solidification from PBAT molten state, the sample’s degree of crystallinity varied with composition through the transcrystallization phenomenon. Nanocomposite thermal stability decreased possibly owing to the catalytic action of sulfonated amorphous cellulose chains. For the sample with 3 wt.% of nanocellulose, the highest values of complex viscosity and storage modulus were achieved.展开更多
In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magneti...In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magnetic resonance spectroscopy ('H-NMR), in conjunction with a model compound. The 1 H-NMR results of the annealed blend PC/BCL(21) show that the formation of bisphenol A-terephthalate ester units is the same as in the annealed blend of PC with PBT, and the transesterification actually occurs between PC and butylene terephthalate (BT) segments in BCL(21). By comparison with the model compound bisphenol A dibutyrate, the new signal appearing at δ= 2.56 in the 1H-NMR spectrum confirms the existence of bisphenol A caprolactone ester units resulting from the exchange reaction of PC with caprolactone (CL) segments. 1H-NMR analysis of the transesterification rates reveals that the reaction of PC with aromatic and aliphatic segments in BCL(21) proceeds in a random manner. The miscibility of the blend PC/BCL(21) copolyester is favorable for the transesterification of PC with BT segments and CL segments.展开更多
In the present study,thermal behavior and crystal transition of pure poly(butylene adipate)(PBA)upon heating process were investigated by FTIR spectroscopy.To gain further insight into the thermal behavior alteration ...In the present study,thermal behavior and crystal transition of pure poly(butylene adipate)(PBA)upon heating process were investigated by FTIR spectroscopy.To gain further insight into the thermal behavior alteration and the phase transition of PBA,we performed two-dimensional(2D)correlation analysis.We found thatβ-form PBA crystal undergoes not only the melting process but also crystal transition upon the heating process.展开更多
In this study,a series of poly(butylene succinate)(PBSU)/gelatin composites were prepared by electrospinning.The morphology,physicochemical analysis,biomechanical properties,biocompatibility,and biodegradability of th...In this study,a series of poly(butylene succinate)(PBSU)/gelatin composites were prepared by electrospinning.The morphology,physicochemical analysis,biomechanical properties,biocompatibility,and biodegradability of the materials were evaluated.The results showed that the ultimate tensile stress of the vascular PBSU/gelatin grafts at(95/5),(90/10),(85/15),and(80/20)was(4.17±0.54)MPa,(3.81±0.44)MPa,2.94±0.69 MPa and 2.11±0.72 MPa respectively,and the burst pressure was(282.7±22.3)kPa,(295.3±3.9)kPa,(306.8±13.9)kPa and(307.6±9.0)kPa respectively,which met the requirements of tissue-engineered blood vessels.Furthermore,the addition of gelatin improved the hydrophilicity and degradation properties of PBSU,thus enhancing cell adhesion and promoting the inward growth of vascular smooth muscle cells.In summary,the research in this paper provides a useful reference for the preparation and optimization of vascular scaffolds.展开更多
This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butyle...This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butylene succinate) (PBS). The taxonomic identity of the strain BFM-X1 was confirmed to be Bionectria ochroleuca (showing a 99% similarity to B. ochroleuca in a BLAST search) through an ITS rRNA analysis. The bio-degradation of the PBS film by strain BFM-X1 was studied. Approximately 97.9% of the PBS film was degraded after strain BFM-X1 was inoculated at 28?C for 14 days. The degradation efficiency of BFM-X1 against PBS film under different soil environmental conditions was characterized. The results indicated that 62.78% of the PBS film loss was recorded in a 30-d experimental run in a sterile soil environment indoors. On adding strain BFM-X1 to a soil sample, the PBS degradation rate accelerated approximately fivefold. Furthermore, both temperature and humidity influenced the in situ degradation of the PBS by strain BFM-X1, and temperature may be the major regulating factor. The degradation was particularly effective in the warm season, with 90% of weight loss occurring in July and August. Scanning electron microscope observations showed surface changes to the film during the degradation process, which suggested that strain BFM-X1preferentially degraded an amorphous part of the film from the surface. These results suggested that the strain B. ochroleuca BFM-X1 was a new resource for degrading PBS film and has high potential in the bioremediation of PBS-plastic-contaminated soil展开更多
The crystallization behavior,crystal morphology and form,and viscoelastic behavior of poly(butylene succinate)(PBS)and coir fiber/PBS composites(CPB)were investigated by differential scanning calorimetry(DSC),polarize...The crystallization behavior,crystal morphology and form,and viscoelastic behavior of poly(butylene succinate)(PBS)and coir fiber/PBS composites(CPB)were investigated by differential scanning calorimetry(DSC),polarized optical microscopy(POM),X-ray diffraction(XRD)and dynamic mechanical analysis(DMA).The results of DSC measurement show that the crystallization temperature increases with the filling of coir fibers.POM images reveal that the spherulitic size and crystallization behavior of PBS are influenced by the coir fibers in the composites.XRD curves show that the crystal form of pure PBS and CPB are remaining almost identical.In addition,the storage modulus of CPB significantly increases comparing with the pure PBS.This predicted the dimensional stability and improved load-deformation temperature.In conclusion,the addition of coir fibers has a significant effect on the thermal properties of the matrix.展开更多
Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/...Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.展开更多
Binary biodegradable polymers films, poly(butylene adipate-co-terephthalate)(PBAT) and poly(glycolic acid)(PGA), were prepared through batch melt mixing to obtain Film Ⅰ and Film Ⅱ under two different processing con...Binary biodegradable polymers films, poly(butylene adipate-co-terephthalate)(PBAT) and poly(glycolic acid)(PGA), were prepared through batch melt mixing to obtain Film Ⅰ and Film Ⅱ under two different processing conditions. PGA crystals played a major role in enhancing the mechanical and barrier properties of the films. For Film Ⅰ, there were initial PGA crystals before the film blowing process, the PGA molecular chain further crystallized, forming the oriented crystallization of PGA. Moreover, the Xcand crystalline size in Film Ⅰ were higher than those in Film Ⅱ. Compared with the different processing methods, Film Ⅰ has excellent mechanical and oxygen barrier properties due to the crystallization and orientation. The tensile strength reached 45.0 MPa, and tear strength exceeded 138.2 kN/m, while the elongation at break was as high as 750% for PBAT/PGA 85/15 in Film Ⅰ. The WVTR, WVP coefficients, and OP coefficients of PBAT/PGA films were decreased obviously with increasing the PGA content both in Film Ⅰ and Film Ⅱ. Moreover, the barrier properties of oxygen in Film Ⅰ were better than that in Film Ⅱ. This work reveals a feasible processing technique by introducing of initial crystallization of PGA to blow PBAT/PGA films with excellent mechanical and barrier properties.展开更多
With the rapid development of electronic equipment and communication technology,the demand for polymer composites with high thermal conductivity and mechanical properties has increased significantly.However,its nondeg...With the rapid development of electronic equipment and communication technology,the demand for polymer composites with high thermal conductivity and mechanical properties has increased significantly.However,its nondegradable polymer matrix will inevitably bring more and more serious environmental pollution.Therefore,it is urgent to develop biodegradable thermally conductive polymer composites.In this work,biodegradable poly(butylene adipate-coterephthalate)(PBAT)is used as the matrix material,and vacuum-assisted filtration technology is employed to prepare carbon nanotube(CNT)and cellulose nanocrystal(CNC)networks with high thermal conductivity.Then CNT-CNC/PBAT composites with high thermal conductivity and excellent mechanical properties are prepared by the ultrasonic-assisted forced infiltration method.Both experiment and simulation methods are used to systematically investigate the thermally conductive and dissipation performances of the CNT-CNC/PBAT composites.Above all,a simple alcoholysis reaction is applied to realize the separation of the PBAT matrix and functional fillers without destroying the conductive network skeleton,which makes it possible for the recycling of thermally conductive polymer composites.展开更多
A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modif...A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modified by bis(tert-butyl dioxy isopropyl)benzene(BIBP)for chain extension,and then the extended PBAT(E-PBAT)was foamed with PPC using a twin(single)screw extruder.By analyzing the properties of the blends,we found that Young’s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC 50/50.The viscosity of the polymer has a critical influence on the formation of cells.Compared with neat PBAT(N-PBAT),the viscosity of E-PBAT increased by 3396 Pa·s and E-PBAT/PPC 50/50 increased by 8836 Pa·s.Meanwhile,the dynamic mechanical analysis(DMA)results showed that the storage modulus(E’)at room temperature increased from 538 MPa to 1650 MPa.The various phase morphologies(“sea-island”,“quasi-co-continuous”and“cocontinuous”)and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam.Therefore,through the analysis of phase morphology and foaming mechanism,we concluded that the E-PBAT/PPC 70/30 component has both excellent strength and the best foaming performance.展开更多
In recent years, poly(butylene adipate-co-terephthalate)(PBAT) has been widely used. However, PBAT-degrading bacteria have rarely been reported. PBAT-degrading bacteria were isolated from farmland soil and identified....In recent years, poly(butylene adipate-co-terephthalate)(PBAT) has been widely used. However, PBAT-degrading bacteria have rarely been reported. PBAT-degrading bacteria were isolated from farmland soil and identified. The effects of growth factors on the degradation of PBAT and the lipase activity of PBAT-degrading bacteria were assessed. The degradation mechanism was analyzed using scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, Xray diffraction, and liquid chromatography-mass spectrometry. The results showed that Stenotrophomonas sp. YCJ1 had a significant degrading effect on PBAT. Under certain conditions, the strain could secrete 10.53 U/m L of lipase activity and degrade 10.14 wt.% of PBAT films. The strain secreted lipase to catalyze the degradation of the ester bonds in PBAT, resulting in the production of degradation products such as terephthalic acid, 1,4-butanediol, and adipic acid. Furthermore, the degradation products could participate in the metabolism of YCJ1 as carbon sources to facilitate complete degradation of PBAT, indicating that the strain has potential value for the bioremediation of PBAT in the environment.展开更多
Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors.In this work,the ...Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors.In this work,the addition of thermoplastic starch to binary PLA/PBAT blends was studied.The compounds were obtained by a reactive extrusion process by means of a co-rotating twin screw extruder.Thermomechanical,physical and chemical characterization tests were carried out to highlight the effectiveness of the material design strategy.The compounds were subsequently reprocessed by cast extrusion and thermoforming in order to obtain products suitable for the storage of hot food.The extruded films and the thermoformed containers were further characterized to highlight their thermo-mechanical,physical and chemical properties.Thermo-rheological,mechanical and physical properties of the material and of the cast film were analyzed thoroughly using combined technique as capillary rheometer,MFI,DSC,VICAT/HDT,XRD,FTIR,UV-Vis,SEM,permeability and,lastly,running preliminary chemical inertness and biodegradation tests.Particular attention was also devoted to the evaluation of the thermo-mechanical resistance of the thermoformed containers,where the PLA/PBAT/TPS blends proved to be very effective,also presenting a high disintegration rate in ambient conditions.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 20434020), the Major State Basic Research Development Program (No. 2005CB623802), and China Postdoctor Science Foundation (No. 20060390334).
文摘Rare earth (Nd, Y, La, Dy) stearates have been synthesized and used as single component catalysts for the polycondensation of dimethyl terephthalate, adipic acid and 1,4-butanediol for the first time preparing biodegradable poly(butylene adipate-co-terephthalate) (PBAT) with high molecular weight, The microstructures of PBAT were characterized by ^1H NMR spectra. The PBAT exhibits good mechanical properties such as high tensile strength (ca. 20 MPa) and long break elongation (〉700%).
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52073261 and U1704162).
文摘Poly(butylene adipate-co-terephthalate)(PBAT)is a promising biodegradable flexible polymer but suffers from slow crystallization rate,making it less attractive for some applications like the injection-molded products in comparison with low-density polyethylene(LDPE).This work aimed to accelerate the crystallization of PBAT by adding a self-assembly nucleating agent octamethylenedicarboxylic dibenzoylhydrazide(OMBH).PBAT/OMBH composites with various OMBH contents(0 wt%,0.5 wt%,0.7 wt%,1 wt%,2 wt%,3 wt%and 5 wt%)were prepared through melt-mixing.The effect of OMBH on the crystallization behavior,morphologies and mechanical properties of PBAT was investigated.The highest nucleation efficiency value of 59.6%was achieved for PBAT with 0.7 wt%OMBH,much higher than that of 22.7%for PBAT with 0.7 wt%talc.Atomic force microscopy results showed that OMBH formed fine fibers and induced the formation of transcrystalline layers of PBAT.Fourier transform infrared spectroscopy(FTIR)combined with two-dimensional correlation spectra suggested that the intermolecular dipole-dipole N—H…O=C interactions but not hydrogen bond between OMBH and PBAT promoted the crystallization of PBAT in the initial period of crystallization.The presence of OMBH did not change the crystal form of PBAT but had positive contribution in enhancing its crystallinity and mechanical properties.This work is essential for preparing PBAT with high crystallization rate,enhancing its potential applications in injection-molded products.
文摘In order to improve the wettability and biocompatibility of the poly (butylene terephthalate) non-woven (PBTNW), the method of surface modification is used to graft copolymerization of chitosan (CS) onto the PBTNW under alkylpolyglycoside (APG) inducing. The product is thoroughly characterized with the Fourier transform infrared spectroscopy (FrIR), the electron spectroscopy for chemical analysis (ESCA), the thermogravimetric (TG) and the scanning electron microscopy (SEM). It is found that chitosan is successfully grafted onto PBTNW. In addition, the water contact angles, hemolysis tests and cytotoxicity evaluation tests show an improvement in wettability and biocompatihility as a result of graft copolymerization of chitosan. So the CS-grafted PBTNW exhibits greater superiority than the original PBTNW. The CS-grafted PBTNW can be a candidate for blood filter materials and other medical applications.
文摘The degradation of thermoplastic starch blend in the presence of commerciala-amylase and unpurified amylase of microbial origin was investigated.The blends consisting of thermoplastic starch and poly(butylene succinate)have potential use in packaging applications thus,it is essential to establish susceptibility to degradation.Molar mass loss,gravimetric weight loss,and molecular structure were evaluated.The changes in the surface were observed with scanning electron microscopy.It was confirmed that there was a significant difference in gravimetric weight loss between the blends degraded in two different solutions.Unpurified enzymes of microbial origin,produced by Rhizopus oryzae cultures decomposed analyzed materials more efficiently than purified commercial ones.Moreover,it was proved that in applied conditions,the molar mass of PBS fraction did not change significantly.
文摘A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA.The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%.Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy(SEM)images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction(XRD)measurement.The melt flow index(MFI)of the blends was higher as the amount of PLA-PBS increased,indicating that the block copolymer did improve the mobility of the PLA chains.Moreover,tensile tests revealed that PLA with greater PLA-PBS copolymer exhibited higher elongation at break and it reached the maximum at 8 wt%of PLA-PBS in PLA,which was around 6 times higher than that of pure PLA.Furthermore,the glass transition temperature,measured by differential scanning calorimetry(DSC),markedly decreased with an increasing amount of the copolymer as it decreased from 61.2℃ for pure PLA to 41.3℃when it was blended with 10 wt%PLA-PBS copolymer.Therefore,the PLA-PBS copolymer was shown to be a promising plasticizer for fully biobased and toughened PLA.
基金Supported by Shanghai Municipal Science and Technology Development Fund (No.045211052)
文摘Poly ( butylene succinate ) ( PBS ), poly ( butylene terephthalate) (PBT) and poly (butylene succirmte-coterephthalate) (PBST)s were synthesized from dimethyl succinate and/or dimethyl terephthalate reacting with 1,4- butanediol through a process of transesterification/ polycondmsation in the presence of a high effective catalyst and characterized by means of GPC and DSC. The investigation was mainly focused on the influence of content of terephthalate units on the molecular weight and thermal properties of resulting polymers. It is revealed that the melting temperature and crystallinity of synthesized polymers decrease first with the increase of terephthalate units, then shift to rise gradually by DSC measurements. The results of Flory equation suggest sequence structure of PBSTs is random.
文摘The concern with environmental preservation is a very current and relevant topic. Regarding polymers, the search for potentially ecofriendly matters has been the subject of scientific research. In this context, this work aimed to study the effect of adding nanocellulose (nCE) with 1, 3, and 5 wt.% on poly(butylene adipate-co-butylene terephthalate) (PBAT). Thermal, structural, relaxometric, and rheological assessments were carried out. Quantitative evaluation of PBAT copolymer by high field NMR revealed 56.4 and 43.6 m.% of the butylene adipate and butylene terephthalate segments, respectively. WAXD measurement on the deconvoluted diffraction patterns identified that nCE was a mixing of Cellulose I and Cellulose II polymorph structures. At any composition, nanocellulose interfered with the PBAT crystallisation process. Also, a series of new PBAT crystallographic planes appeared as a function of nanocellulose content. PBAT hydrogen molecular relaxation varied randomly with nanocellulose content and had a strong effect on the hydrogen relaxation. PBAT cold crystallisation and melting temperatures (T<sub>cc</sub> and T<sub>m</sub>) were almost unchangeable. Although T<sub>cc</sub> did not change during polymer solidification from PBAT molten state, the sample’s degree of crystallinity varied with composition through the transcrystallization phenomenon. Nanocomposite thermal stability decreased possibly owing to the catalytic action of sulfonated amorphous cellulose chains. For the sample with 3 wt.% of nanocellulose, the highest values of complex viscosity and storage modulus were achieved.
文摘In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magnetic resonance spectroscopy ('H-NMR), in conjunction with a model compound. The 1 H-NMR results of the annealed blend PC/BCL(21) show that the formation of bisphenol A-terephthalate ester units is the same as in the annealed blend of PC with PBT, and the transesterification actually occurs between PC and butylene terephthalate (BT) segments in BCL(21). By comparison with the model compound bisphenol A dibutyrate, the new signal appearing at δ= 2.56 in the 1H-NMR spectrum confirms the existence of bisphenol A caprolactone ester units resulting from the exchange reaction of PC with caprolactone (CL) segments. 1H-NMR analysis of the transesterification rates reveals that the reaction of PC with aromatic and aliphatic segments in BCL(21) proceeds in a random manner. The miscibility of the blend PC/BCL(21) copolyester is favorable for the transesterification of PC with BT segments and CL segments.
文摘In the present study,thermal behavior and crystal transition of pure poly(butylene adipate)(PBA)upon heating process were investigated by FTIR spectroscopy.To gain further insight into the thermal behavior alteration and the phase transition of PBA,we performed two-dimensional(2D)correlation analysis.We found thatβ-form PBA crystal undergoes not only the melting process but also crystal transition upon the heating process.
基金National Natural Science Foundation of China(31870966,81800931,81901062)National Key Research Development Program of China(2020YFA0803701,2017YFC1103504)Tianjin Science Foundation(20YFZCSY01020).
文摘In this study,a series of poly(butylene succinate)(PBSU)/gelatin composites were prepared by electrospinning.The morphology,physicochemical analysis,biomechanical properties,biocompatibility,and biodegradability of the materials were evaluated.The results showed that the ultimate tensile stress of the vascular PBSU/gelatin grafts at(95/5),(90/10),(85/15),and(80/20)was(4.17±0.54)MPa,(3.81±0.44)MPa,2.94±0.69 MPa and 2.11±0.72 MPa respectively,and the burst pressure was(282.7±22.3)kPa,(295.3±3.9)kPa,(306.8±13.9)kPa and(307.6±9.0)kPa respectively,which met the requirements of tissue-engineered blood vessels.Furthermore,the addition of gelatin improved the hydrophilicity and degradation properties of PBSU,thus enhancing cell adhesion and promoting the inward growth of vascular smooth muscle cells.In summary,the research in this paper provides a useful reference for the preparation and optimization of vascular scaffolds.
文摘This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butylene succinate) (PBS). The taxonomic identity of the strain BFM-X1 was confirmed to be Bionectria ochroleuca (showing a 99% similarity to B. ochroleuca in a BLAST search) through an ITS rRNA analysis. The bio-degradation of the PBS film by strain BFM-X1 was studied. Approximately 97.9% of the PBS film was degraded after strain BFM-X1 was inoculated at 28?C for 14 days. The degradation efficiency of BFM-X1 against PBS film under different soil environmental conditions was characterized. The results indicated that 62.78% of the PBS film loss was recorded in a 30-d experimental run in a sterile soil environment indoors. On adding strain BFM-X1 to a soil sample, the PBS degradation rate accelerated approximately fivefold. Furthermore, both temperature and humidity influenced the in situ degradation of the PBS by strain BFM-X1, and temperature may be the major regulating factor. The degradation was particularly effective in the warm season, with 90% of weight loss occurring in July and August. Scanning electron microscope observations showed surface changes to the film during the degradation process, which suggested that strain BFM-X1preferentially degraded an amorphous part of the film from the surface. These results suggested that the strain B. ochroleuca BFM-X1 was a new resource for degrading PBS film and has high potential in the bioremediation of PBS-plastic-contaminated soil
基金The Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QE075).
文摘The crystallization behavior,crystal morphology and form,and viscoelastic behavior of poly(butylene succinate)(PBS)and coir fiber/PBS composites(CPB)were investigated by differential scanning calorimetry(DSC),polarized optical microscopy(POM),X-ray diffraction(XRD)and dynamic mechanical analysis(DMA).The results of DSC measurement show that the crystallization temperature increases with the filling of coir fibers.POM images reveal that the spherulitic size and crystallization behavior of PBS are influenced by the coir fibers in the composites.XRD curves show that the crystal form of pure PBS and CPB are remaining almost identical.In addition,the storage modulus of CPB significantly increases comparing with the pure PBS.This predicted the dimensional stability and improved load-deformation temperature.In conclusion,the addition of coir fibers has a significant effect on the thermal properties of the matrix.
基金The National Natural Science Foundation of China (No. 20374032) and Tianjin Science and Technology Key Project (No. 05YFSZSF02200)
文摘Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.
基金supported by the Science and Technology Development Plan of Jilin Province(Nos.20210203199SF and 20210509017RQ)the Science and Technology Development Program of Yantai of China(No.2022ZDCX015)+2 种基金the Chinese Academy of Sciences(Changchun Branch)(Nos.2021SYHZ0044 and 2021SYHZ0042)Science and Technology Bureau of Changchun City of China(Nos.21SH13 and 21KY01)Development and Reform commission of Jilin Province of China(No.2021C039-2).
文摘Binary biodegradable polymers films, poly(butylene adipate-co-terephthalate)(PBAT) and poly(glycolic acid)(PGA), were prepared through batch melt mixing to obtain Film Ⅰ and Film Ⅱ under two different processing conditions. PGA crystals played a major role in enhancing the mechanical and barrier properties of the films. For Film Ⅰ, there were initial PGA crystals before the film blowing process, the PGA molecular chain further crystallized, forming the oriented crystallization of PGA. Moreover, the Xcand crystalline size in Film Ⅰ were higher than those in Film Ⅱ. Compared with the different processing methods, Film Ⅰ has excellent mechanical and oxygen barrier properties due to the crystallization and orientation. The tensile strength reached 45.0 MPa, and tear strength exceeded 138.2 kN/m, while the elongation at break was as high as 750% for PBAT/PGA 85/15 in Film Ⅰ. The WVTR, WVP coefficients, and OP coefficients of PBAT/PGA films were decreased obviously with increasing the PGA content both in Film Ⅰ and Film Ⅱ. Moreover, the barrier properties of oxygen in Film Ⅰ were better than that in Film Ⅱ. This work reveals a feasible processing technique by introducing of initial crystallization of PGA to blow PBAT/PGA films with excellent mechanical and barrier properties.
基金Basic Science Center Program,Grant/Award Number:51988102National Natural Science Foundation of China,Grant/Award Numbers:52003019,52073011+1 种基金National Natural Science Foundation of China,Sinopec Key Projects,Grant/Award Number:420043-6Talents Introduction Project in Beijing University of Chemical Technology,Grant/Award Number:buctrc201909。
文摘With the rapid development of electronic equipment and communication technology,the demand for polymer composites with high thermal conductivity and mechanical properties has increased significantly.However,its nondegradable polymer matrix will inevitably bring more and more serious environmental pollution.Therefore,it is urgent to develop biodegradable thermally conductive polymer composites.In this work,biodegradable poly(butylene adipate-coterephthalate)(PBAT)is used as the matrix material,and vacuum-assisted filtration technology is employed to prepare carbon nanotube(CNT)and cellulose nanocrystal(CNC)networks with high thermal conductivity.Then CNT-CNC/PBAT composites with high thermal conductivity and excellent mechanical properties are prepared by the ultrasonic-assisted forced infiltration method.Both experiment and simulation methods are used to systematically investigate the thermally conductive and dissipation performances of the CNT-CNC/PBAT composites.Above all,a simple alcoholysis reaction is applied to realize the separation of the PBAT matrix and functional fillers without destroying the conductive network skeleton,which makes it possible for the recycling of thermally conductive polymer composites.
基金financially supported by the National Key Research and Development Program of China(No.2016YFC0501402)Science and Technology Services Network Program of Chinese Science Academy(STS Project)(No.KFJSTS-ZDTP-082)Chinese Academy of Sciences(Changchun Branch)(Nos.2020SYHZ0002 and No.2020SYHZ0047)。
文摘A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modified by bis(tert-butyl dioxy isopropyl)benzene(BIBP)for chain extension,and then the extended PBAT(E-PBAT)was foamed with PPC using a twin(single)screw extruder.By analyzing the properties of the blends,we found that Young’s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC 50/50.The viscosity of the polymer has a critical influence on the formation of cells.Compared with neat PBAT(N-PBAT),the viscosity of E-PBAT increased by 3396 Pa·s and E-PBAT/PPC 50/50 increased by 8836 Pa·s.Meanwhile,the dynamic mechanical analysis(DMA)results showed that the storage modulus(E’)at room temperature increased from 538 MPa to 1650 MPa.The various phase morphologies(“sea-island”,“quasi-co-continuous”and“cocontinuous”)and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam.Therefore,through the analysis of phase morphology and foaming mechanism,we concluded that the E-PBAT/PPC 70/30 component has both excellent strength and the best foaming performance.
基金supported by the Research Fund at the Shaanxi Provincial Science and Technology Department of China (No. 2018SF-375)Beijing Key Laboratory of Plastics Health and Safety Quality Evaluation Technology, Beijing Technology and Business University (No. TQETJP2018 004)。
文摘In recent years, poly(butylene adipate-co-terephthalate)(PBAT) has been widely used. However, PBAT-degrading bacteria have rarely been reported. PBAT-degrading bacteria were isolated from farmland soil and identified. The effects of growth factors on the degradation of PBAT and the lipase activity of PBAT-degrading bacteria were assessed. The degradation mechanism was analyzed using scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, Xray diffraction, and liquid chromatography-mass spectrometry. The results showed that Stenotrophomonas sp. YCJ1 had a significant degrading effect on PBAT. Under certain conditions, the strain could secrete 10.53 U/m L of lipase activity and degrade 10.14 wt.% of PBAT films. The strain secreted lipase to catalyze the degradation of the ester bonds in PBAT, resulting in the production of degradation products such as terephthalic acid, 1,4-butanediol, and adipic acid. Furthermore, the degradation products could participate in the metabolism of YCJ1 as carbon sources to facilitate complete degradation of PBAT, indicating that the strain has potential value for the bioremediation of PBAT in the environment.
文摘Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors.In this work,the addition of thermoplastic starch to binary PLA/PBAT blends was studied.The compounds were obtained by a reactive extrusion process by means of a co-rotating twin screw extruder.Thermomechanical,physical and chemical characterization tests were carried out to highlight the effectiveness of the material design strategy.The compounds were subsequently reprocessed by cast extrusion and thermoforming in order to obtain products suitable for the storage of hot food.The extruded films and the thermoformed containers were further characterized to highlight their thermo-mechanical,physical and chemical properties.Thermo-rheological,mechanical and physical properties of the material and of the cast film were analyzed thoroughly using combined technique as capillary rheometer,MFI,DSC,VICAT/HDT,XRD,FTIR,UV-Vis,SEM,permeability and,lastly,running preliminary chemical inertness and biodegradation tests.Particular attention was also devoted to the evaluation of the thermo-mechanical resistance of the thermoformed containers,where the PLA/PBAT/TPS blends proved to be very effective,also presenting a high disintegration rate in ambient conditions.