Poly(phenylene sulfide/ether) (PPSE) was synthesized from 4,4'-dihydroxydiphenyl sulfide and 4,4'-dichlorodiphenyl sulfide in solution by nucleophilic substitution reaction. The resulting polymer was characteriz...Poly(phenylene sulfide/ether) (PPSE) was synthesized from 4,4'-dihydroxydiphenyl sulfide and 4,4'-dichlorodiphenyl sulfide in solution by nucleophilic substitution reaction. The resulting polymer was characterized by viscosity measurement, elemental analysis, FT-IR, ^1H NMR, X-ray diffraction and thermal analysis. The results showed that the viscosities of the resulting polymer were above 0.68 dL/g, and the linear chain structure of product was confirmed. PPSE had the same reflex indices as poly(p-phenylene sulfide), an orthorhombic crystalline with unit cell a=0.853, b=0.562, c=1.026nm. The melting temperature, glass transition temperature and initial decomposition temperature were found to be 228℃, 85℃ and 325℃, respectively. The product was soluble in common organic solvents such as NMP, N, N'-dimethylformamide, N, N'-dimethylacetamide and 1,2-dichloroethane.展开更多
Commercial poly(p-phenylene sulfide) (PPS) was thermally cured, which resulted in an increase of molecular weight due to cross-linking. Non-isothermal crystallization studies of samples cured for up to 7 days at 250?C...Commercial poly(p-phenylene sulfide) (PPS) was thermally cured, which resulted in an increase of molecular weight due to cross-linking. Non-isothermal crystallization studies of samples cured for up to 7 days at 250?C showed a monotonous increase of crystallization temperature compared to pure PPS. However, a further increase of curing time decreased the crystallization temperature. The change in the half-crystallization time (t1/2) was similar to the crystallization temperature. Thus, the cross-linking of PPS affected crystallization behaviors significantly. To a certain extent, crosslinks acted as nucleation agents, but excessive cross-linking hindered the crystallization. Morphologies observed by polarized optical microscopy suggested that thermal curing for as little as 1 day contributed to the spherulitic structure having a smaller size, that was not observed with pure PPS.展开更多
Poly(phenylene sulfide amide) (PPSA) has been synthesized by using sulfur as S source which reacts with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure. The polymer structures ...Poly(phenylene sulfide amide) (PPSA) has been synthesized by using sulfur as S source which reacts with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure. The polymer structures were determined by elemental analysis, FT-IR and H-1-NMR. It is shown that the yielded polymer has linear structure and its structure unit is -p-C6H4-CONH -p-C6H4-S-. The polymer morphology was studied by X-ray diffraction and polarized microscopy. The results show that PPSA is a crystalline polymer and its spherulites are the aggregation of nontwisting lamella or micro-thread structure. Under shearing force, these crystals are dispersed to form micro-fibrillar structure. The decomposition kinetics of PPSA was also studied at different heating rates. The decomposition energy of PPSA is higher than that of PPS.展开更多
A new process for preparing poly(phenylene sulfide amide, PPSA), which is by reaction of sulfur instead of sodium sulfide as S source with dichlorobenzamide (DCBA) and alkali in polar orga...A new process for preparing poly(phenylene sulfide amide, PPSA), which is by reaction of sulfur instead of sodium sulfide as S source with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure (called sulfur solution route), is reported in the present paper. The influences of polymerization time, molar ratio of precursors, catalyst and solvent upon the polymer were investigated. To seek the best parameters of polymerization, orthogonal design was employed in the experiments. The results indicate that the molar ratio of precursors is the most significant effect on both of viscosity and yield of the polymer. The suitable parameters for preparing the related polymer are presented. The polymer was characterized by IRspectrum, 1HNMRspectrum and Raman spectrum, etc.展开更多
文摘Poly(phenylene sulfide/ether) (PPSE) was synthesized from 4,4'-dihydroxydiphenyl sulfide and 4,4'-dichlorodiphenyl sulfide in solution by nucleophilic substitution reaction. The resulting polymer was characterized by viscosity measurement, elemental analysis, FT-IR, ^1H NMR, X-ray diffraction and thermal analysis. The results showed that the viscosities of the resulting polymer were above 0.68 dL/g, and the linear chain structure of product was confirmed. PPSE had the same reflex indices as poly(p-phenylene sulfide), an orthorhombic crystalline with unit cell a=0.853, b=0.562, c=1.026nm. The melting temperature, glass transition temperature and initial decomposition temperature were found to be 228℃, 85℃ and 325℃, respectively. The product was soluble in common organic solvents such as NMP, N, N'-dimethylformamide, N, N'-dimethylacetamide and 1,2-dichloroethane.
文摘Commercial poly(p-phenylene sulfide) (PPS) was thermally cured, which resulted in an increase of molecular weight due to cross-linking. Non-isothermal crystallization studies of samples cured for up to 7 days at 250?C showed a monotonous increase of crystallization temperature compared to pure PPS. However, a further increase of curing time decreased the crystallization temperature. The change in the half-crystallization time (t1/2) was similar to the crystallization temperature. Thus, the cross-linking of PPS affected crystallization behaviors significantly. To a certain extent, crosslinks acted as nucleation agents, but excessive cross-linking hindered the crystallization. Morphologies observed by polarized optical microscopy suggested that thermal curing for as little as 1 day contributed to the spherulitic structure having a smaller size, that was not observed with pure PPS.
文摘Poly(phenylene sulfide amide) (PPSA) has been synthesized by using sulfur as S source which reacts with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure. The polymer structures were determined by elemental analysis, FT-IR and H-1-NMR. It is shown that the yielded polymer has linear structure and its structure unit is -p-C6H4-CONH -p-C6H4-S-. The polymer morphology was studied by X-ray diffraction and polarized microscopy. The results show that PPSA is a crystalline polymer and its spherulites are the aggregation of nontwisting lamella or micro-thread structure. Under shearing force, these crystals are dispersed to form micro-fibrillar structure. The decomposition kinetics of PPSA was also studied at different heating rates. The decomposition energy of PPSA is higher than that of PPS.
文摘A new process for preparing poly(phenylene sulfide amide, PPSA), which is by reaction of sulfur instead of sodium sulfide as S source with dichlorobenzamide (DCBA) and alkali in polar organic solvent at the atmospheric pressure (called sulfur solution route), is reported in the present paper. The influences of polymerization time, molar ratio of precursors, catalyst and solvent upon the polymer were investigated. To seek the best parameters of polymerization, orthogonal design was employed in the experiments. The results indicate that the molar ratio of precursors is the most significant effect on both of viscosity and yield of the polymer. The suitable parameters for preparing the related polymer are presented. The polymer was characterized by IRspectrum, 1HNMRspectrum and Raman spectrum, etc.