The polymerization of styrene is monitored by pyrene excimer formation. The ratio of monomer to excimer intensities ( I m/ I e) of pyrene increases as polymerization proceeds. The increase of I m/ I e...The polymerization of styrene is monitored by pyrene excimer formation. The ratio of monomer to excimer intensities ( I m/ I e) of pyrene increases as polymerization proceeds. The increase of I m/ I e is ascribed to the increase of microviscosity surrounding the probes forming excimer during polymerization. The linear relationship between the changing rate of I m/ I e and the polymerization rate of styrene is obtained. Therefore, I m/ I e may be used to monitor the progress of the polymerization of styrene.展开更多
[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spec...[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spectrum and scanning electron microscope, and the property of starch and styrene graft copoly- mer was confirmed through grinding experiment, tensile strength, water absorption rate, hot water resistance properties and enzymatic properties analysis. [Result] The starch and styrene graft copolymer had the properties of thermoplastic and microbial degradation. IConclusion] The starch and styrene graft copolymer is expected to be developed as a biodegradable material.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
Synthesis and characterization of the copolymers (PAG) of α-methyl styrene (AMS) and glycidyl methacrylate (GMA) are presented. The copolymers of PAG were characterized by gel permeation chromatography (GPC),...Synthesis and characterization of the copolymers (PAG) of α-methyl styrene (AMS) and glycidyl methacrylate (GMA) are presented. The copolymers of PAG were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (^1H-NMR) and thermogravimetery (TG). Based on the copolymer compositions determined by ^1H-NMR, the reactivity ratios of AMS and GMA were found to be 0.105 ± 0.012 and 0.883 ± 0.046 respectively by Kelen-Tudos method. TG revealed that thermal stability of the copolymers decreased with increasing the AMS content in the copolymers, which indicated that the degradation was mainly caused by the chain scission of AMS-containing structures. Under heating, the copolymers depolymerize at their weak bonds and form chain radicals, which could further initiate other chemical reactions.展开更多
Emulsion copolymerization of styrene and ethylene catalyzed by a series of neutral nickel(Ⅱ) complexes was carried out in an aqueous system to give high-molecular-weight copolymers.The copolymers and emulsions were c...Emulsion copolymerization of styrene and ethylene catalyzed by a series of neutral nickel(Ⅱ) complexes was carried out in an aqueous system to give high-molecular-weight copolymers.The copolymers and emulsions were characterized by an array of techniques including NMR,GPC,TEM,WAXD and DSC.The results indicate that the copolymers obtained are mostly block copolymers of polyethylene with random insertion of styrene units,and their M_W is in the range of 10~5-10~6.By enhancing the electron withdrawing of the s...展开更多
Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an al...Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an alternating structure.展开更多
In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By ar...In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By argon (Ar) treating and subsequent grafting reaction, a hydrophobe monomer, styrene, was introduced into the PVDF membrane. Fourier transform infrared attenuated total reflection (FTIR-ATR) was utilized to characterize the chemical and physical changes in the Ar plasma modified membrane. The surface modifications of PVDF membranes were investigated by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimeter (DSC). The water permeability and the solute rejection were measured by PVDF membrane modified in different graft conditions. Results demonstrated that the pores in the modified membranes get smaller and the distribution of pores gets narrowed with the increase in grafting reaction duration. Longer graft time caused the water flux of PVDF membrane to decrease from 578 kg/(m^2· h) to 23 kg/(m^2· h) and the solute rejection to increase from 73% to 92%.展开更多
Disubstituted oxazoles were prepared conveniently by treatment of aromatic -methyl ketones and nitriles with poly[styrene(iodosodiacetate)] in one-pot process.
The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,...The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.展开更多
The catalytic activity of poly(styrene-acrylic acid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-Vinylpyridine was studied. The influence of various factors, suc...The catalytic activity of poly(styrene-acrylic acid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-Vinylpyridine was studied. The influence of various factors, such as Al/Nd molar ratio, reaction time, macromolecular carder (PSAA), and ratio of styrene to 4-vinypyridine (g/g), on the copolymerization yield of styrene and 4-Vinylpyridine was investigated. The results showed that the copolymerization of polar monomers with olefins occurred efficiently and the catalytic activity of polymer-supported catalyst was higher than that of the similar small molecular catalysts. The activity of PSAA.Nd complex increased with in- creasing Al/Nd molar ratios and decreased with increasing polymerization time. The highest activity of PSAA'Nd was observed at 120 min, and the highest yield was found at the ratio of styrene to 4-vinylpyridine of 4:2. DSC analysis presented that the resulted polymer had only one glass transition temperature, and showed very good thermal stability.展开更多
A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reactio...A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reaction of n-butyl-Li (n-BuLi), stannic chloride (SnCl4) and diene. Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators. The result suggested that the initiators had a remarkable yield by GPC, nearly 90%. By using these multifunctional macromolecular initiators, styrene and butadiene were effectively polymefized via anionic polymerization, which gave birth to novel miktoarm star copolymers. The relative molecular weight and polydispersity index, microstructure contents, copolymerization components, glass transition temperature (Tg) and morphology of the miktoarm star copolymers were investigated by GPC-UV, ~H NMR, DSC and TEM, respectively. 2009 Xing Ying Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benz...The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benzyl or allyl; X=Cl or Br) have been studied and examined. In a CuCl/bpy/RCl/St system, a bimodal GPC peak at the early stage of polymerization was observed, and a concept of multi active species was proposed to explain this phenomenon. In a CuCl/phen (DPP)/RCl/St system, the \%M\%\-n of polystyrene (PS) increased linearly with St conversion and ln[M] o/[M] also increased linearly with time, indicating the living nature of this system. Furthermore, the stability of the propagating active species in a CuBr/phen/RBr/St system is higher than that in the CuBr/phen/RBr/St system.展开更多
The synthesis of organolanthanide compounds identified as LnCp^*(MS)2PzA, Ln = Sm, Tb, Yb (MS = methanesulfonate, Cp^* = pentamethylcyclopentadienyl, and PzA = pyrazinamide), by the reaction of coordination comp...The synthesis of organolanthanide compounds identified as LnCp^*(MS)2PzA, Ln = Sm, Tb, Yb (MS = methanesulfonate, Cp^* = pentamethylcyclopentadienyl, and PzA = pyrazinamide), by the reaction of coordination compounds Ln(MS)3(PzA)4 with NaCp in THF was reported. The complexes were formulated according to elemental analyses, complexometric titration with EDTA (%Ln), and ^1H NMR. IR spectroscopy revealed that PzA coordinates with lanthanide (Ⅲ) ions and methanesulfonate coordinates via oxygen atoms in a non-equivalent manner. In preliminary catalytic studies, these compounds were active in styrene polymerization that used MAO as a cocatalyst with an activity of 12.3 kg PS molSm^-1h^-1. Differential scanning calorimetry (DSC) of polystyrene showed that the polymer was mainly atactic.展开更多
Neutral nickel sigma -acetylide complex [Ni(C=CPh)(2)(PBu3)(2)] is a novel initiator for the polymerization of styrene in CHCl3 over a range of polymerization temperature from 40 degreesC to 60 degreesC. The polystyre...Neutral nickel sigma -acetylide complex [Ni(C=CPh)(2)(PBu3)(2)] is a novel initiator for the polymerization of styrene in CHCl3 over a range of polymerization temperature from 40 degreesC to 60 degreesC. The polystyrene obtained was a syndio-rich atactic polymer and its weight-average molecular weight reached 279000. The mechanism of the polymerization was discussed and a radical mechanism was proposed.展开更多
A phosphorus-containing monomer (lO-oxo-10-hydro-9-oxa-10λ^5-phosphaphenanthrene-10-yl)-methyl acrylate (MD was copolymerized with styrene to give a potential flame retardant copolymer of high thermal stability. T...A phosphorus-containing monomer (lO-oxo-10-hydro-9-oxa-10λ^5-phosphaphenanthrene-10-yl)-methyl acrylate (MD was copolymerized with styrene to give a potential flame retardant copolymer of high thermal stability. The structures of monomer and copolymer were characterized by FT-IR and ^1H NMR measurements. The reactivity ratios for free-radical of the monomer (M1) and styrene (Mz) were studied. The calculated results are as follows: r1 = 0.225, r2 = 0.503; Q1 = 0.413, e1 = 0.476; azeotropic point = 0.37. TGA and DTG curves indicated that Ml is a potential flame retarding monomer for styrenic polymers. C 2009 Yu Bin Zheng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by cons...The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.展开更多
With the advent of plastics and the wide range of fillers that are available have made modifications as precise as the tailored resins themselves. To modify the properties of polymer either by using fillers or by prep...With the advent of plastics and the wide range of fillers that are available have made modifications as precise as the tailored resins themselves. To modify the properties of polymer either by using fillers or by preparation of polymer blends gives rise to new materials with tailored properties. More complex, three-component systems, obtained by the addition of polymeric modifier to polymer filled composites may be of interest. Use of Fly ash cenospheres is very attractive because it is inexpensive and its use can reduce the environmental pollution to a significant extent. In the present study, Poly (Methyl Methacrylate) (PMMA)-Fly ash cenospheres composites were prepared using extrusion followed by Injection molding. The effect of matrix modification with Methyl methacrylate– acrylonitrile -butadiene–styrene (MABS) on the performance of PMMA- Fly ash cenospheres compositions was also, studied. It was found that with the addition of Fly ash cenospheres particulate as filler in PMMA showed marginal reduction in Tensile Strength, % Elongation and Impact strength and improvement in Flexural Strength, Heat Deflection Temperature and Vicat Softening Point. Compared with PMMA-cenospheres composites, the notched Impact Strength of the PMMA/MABS/cenospheres composites showed marginal enhancement in values at higher loading of cenospheres. The optimum performances in mechanical and thermal properties were obtained when the ratio of MABS to cenospheres was 1:2.展开更多
The oil-in-water microemulsion containing N-butyl maleimide(NBMI. M_1) and styrene(St, M_2) was prepared. The complexation properties of NBMI and St in microemulsion were investigated by means of 1H-NMR. With the part...The oil-in-water microemulsion containing N-butyl maleimide(NBMI. M_1) and styrene(St, M_2) was prepared. The complexation properties of NBMI and St in microemulsion were investigated by means of 1H-NMR. With the participation of charge-transfer complex(CTC). four reactivity ratios and the relative reactivity of free monomers and CTC were obtained. The result was compared with that measured by Mayo-Lewis method.展开更多
A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polyme...A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polymerization (ATRP) in thepreparation of 4-armed polystyrene (PSt) with narrow polydispersity. The structure, molecular weight and molecular weightdistribution (MWD) of each arm were studied by ~1H-NMR and GPC data of hydrolyzed products of the 4-armed PSt. TheATRP of St using 1/CuBr/bpy as initiator system is of 'living' character based on the following evidence: narrow MWD,constant concentration of chain radical during the polymerization, control of molecular weight by the molar ratio of monomerconsumed to 1. The 4-armed poly(St-b-p-nitrophenyl methacrylate) [poly(St-b-NPMA)] was prepared by the ATRP ofNPMA using 4-armed PSt with terminal bromine as the initiator, and characterized by FT-IR, ~1H-NMR spectra and GPCcurves. The micelles with PSt as core, and PNPMA as shell were formed by dropping DMSO into a solution of 4-armedpoly(St-b-NPMA) in DMF, as proved by laser light scatter (LLS) method.展开更多
Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in...Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgA1-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgA1-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems. In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10^- 3 S·m^-1 was achieved for the polymer electrolyte.展开更多
文摘The polymerization of styrene is monitored by pyrene excimer formation. The ratio of monomer to excimer intensities ( I m/ I e) of pyrene increases as polymerization proceeds. The increase of I m/ I e is ascribed to the increase of microviscosity surrounding the probes forming excimer during polymerization. The linear relationship between the changing rate of I m/ I e and the polymerization rate of styrene is obtained. Therefore, I m/ I e may be used to monitor the progress of the polymerization of styrene.
文摘[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spectrum and scanning electron microscope, and the property of starch and styrene graft copoly- mer was confirmed through grinding experiment, tensile strength, water absorption rate, hot water resistance properties and enzymatic properties analysis. [Result] The starch and styrene graft copolymer had the properties of thermoplastic and microbial degradation. IConclusion] The starch and styrene graft copolymer is expected to be developed as a biodegradable material.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
文摘Synthesis and characterization of the copolymers (PAG) of α-methyl styrene (AMS) and glycidyl methacrylate (GMA) are presented. The copolymers of PAG were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (^1H-NMR) and thermogravimetery (TG). Based on the copolymer compositions determined by ^1H-NMR, the reactivity ratios of AMS and GMA were found to be 0.105 ± 0.012 and 0.883 ± 0.046 respectively by Kelen-Tudos method. TG revealed that thermal stability of the copolymers decreased with increasing the AMS content in the copolymers, which indicated that the degradation was mainly caused by the chain scission of AMS-containing structures. Under heating, the copolymers depolymerize at their weak bonds and form chain radicals, which could further initiate other chemical reactions.
文摘Emulsion copolymerization of styrene and ethylene catalyzed by a series of neutral nickel(Ⅱ) complexes was carried out in an aqueous system to give high-molecular-weight copolymers.The copolymers and emulsions were characterized by an array of techniques including NMR,GPC,TEM,WAXD and DSC.The results indicate that the copolymers obtained are mostly block copolymers of polyethylene with random insertion of styrene units,and their M_W is in the range of 10~5-10~6.By enhancing the electron withdrawing of the s...
基金This project was supported by the National Natural Science Foundation of China. (No.29974024,20254001)
文摘Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an alternating structure.
基金supported by the Major State Basic Research Program of China (No. 2009CB623404) National Natural Science Foundation of China (Nos. 20736003, 20676067)+2 种基金 National High Technology Research and Development Program of China (No. 2007AA06Z317)Foundation of Ministry of Education of China (No. 20070003130)Foundation of the State Key Laboratory of Chemical Engineering (No. SKL-ChE-08A01)
文摘In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By argon (Ar) treating and subsequent grafting reaction, a hydrophobe monomer, styrene, was introduced into the PVDF membrane. Fourier transform infrared attenuated total reflection (FTIR-ATR) was utilized to characterize the chemical and physical changes in the Ar plasma modified membrane. The surface modifications of PVDF membranes were investigated by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimeter (DSC). The water permeability and the solute rejection were measured by PVDF membrane modified in different graft conditions. Results demonstrated that the pores in the modified membranes get smaller and the distribution of pores gets narrowed with the increase in grafting reaction duration. Longer graft time caused the water flux of PVDF membrane to decrease from 578 kg/(m^2· h) to 23 kg/(m^2· h) and the solute rejection to increase from 73% to 92%.
文摘Disubstituted oxazoles were prepared conveniently by treatment of aromatic -methyl ketones and nitriles with poly[styrene(iodosodiacetate)] in one-pot process.
基金supported by the Beijing Municipal Project for Developing Advanced Human Resources for Higher Education(Elastomers and Biomaterials).
文摘The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.
基金Science Technology Foundation of Jilin Province (200223)
文摘The catalytic activity of poly(styrene-acrylic acid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-Vinylpyridine was studied. The influence of various factors, such as Al/Nd molar ratio, reaction time, macromolecular carder (PSAA), and ratio of styrene to 4-vinypyridine (g/g), on the copolymerization yield of styrene and 4-Vinylpyridine was investigated. The results showed that the copolymerization of polar monomers with olefins occurred efficiently and the catalytic activity of polymer-supported catalyst was higher than that of the similar small molecular catalysts. The activity of PSAA.Nd complex increased with in- creasing Al/Nd molar ratios and decreased with increasing polymerization time. The highest activity of PSAA'Nd was observed at 120 min, and the highest yield was found at the ratio of styrene to 4-vinylpyridine of 4:2. DSC analysis presented that the resulted polymer had only one glass transition temperature, and showed very good thermal stability.
基金supported by National Natural Science Foundation of China(No.50573005)
文摘A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization. At first, polydiene-stannum chloride (PD-SnCl3) was prepared by the reaction of n-butyl-Li (n-BuLi), stannic chloride (SnCl4) and diene. Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators. The result suggested that the initiators had a remarkable yield by GPC, nearly 90%. By using these multifunctional macromolecular initiators, styrene and butadiene were effectively polymefized via anionic polymerization, which gave birth to novel miktoarm star copolymers. The relative molecular weight and polydispersity index, microstructure contents, copolymerization components, glass transition temperature (Tg) and morphology of the miktoarm star copolymers were investigated by GPC-UV, ~H NMR, DSC and TEM, respectively. 2009 Xing Ying Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benzyl or allyl; X=Cl or Br) have been studied and examined. In a CuCl/bpy/RCl/St system, a bimodal GPC peak at the early stage of polymerization was observed, and a concept of multi active species was proposed to explain this phenomenon. In a CuCl/phen (DPP)/RCl/St system, the \%M\%\-n of polystyrene (PS) increased linearly with St conversion and ln[M] o/[M] also increased linearly with time, indicating the living nature of this system. Furthermore, the stability of the propagating active species in a CuBr/phen/RBr/St system is higher than that in the CuBr/phen/RBr/St system.
基金Project supported by the Fundacā de Amparo à Pesquisa do Estado de Sāo Paulo and CNPq Conselho Nacional de Desenvolvimento Científico e Teenológico
文摘The synthesis of organolanthanide compounds identified as LnCp^*(MS)2PzA, Ln = Sm, Tb, Yb (MS = methanesulfonate, Cp^* = pentamethylcyclopentadienyl, and PzA = pyrazinamide), by the reaction of coordination compounds Ln(MS)3(PzA)4 with NaCp in THF was reported. The complexes were formulated according to elemental analyses, complexometric titration with EDTA (%Ln), and ^1H NMR. IR spectroscopy revealed that PzA coordinates with lanthanide (Ⅲ) ions and methanesulfonate coordinates via oxygen atoms in a non-equivalent manner. In preliminary catalytic studies, these compounds were active in styrene polymerization that used MAO as a cocatalyst with an activity of 12.3 kg PS molSm^-1h^-1. Differential scanning calorimetry (DSC) of polystyrene showed that the polymer was mainly atactic.
文摘Neutral nickel sigma -acetylide complex [Ni(C=CPh)(2)(PBu3)(2)] is a novel initiator for the polymerization of styrene in CHCl3 over a range of polymerization temperature from 40 degreesC to 60 degreesC. The polystyrene obtained was a syndio-rich atactic polymer and its weight-average molecular weight reached 279000. The mechanism of the polymerization was discussed and a radical mechanism was proposed.
文摘A phosphorus-containing monomer (lO-oxo-10-hydro-9-oxa-10λ^5-phosphaphenanthrene-10-yl)-methyl acrylate (MD was copolymerized with styrene to give a potential flame retardant copolymer of high thermal stability. The structures of monomer and copolymer were characterized by FT-IR and ^1H NMR measurements. The reactivity ratios for free-radical of the monomer (M1) and styrene (Mz) were studied. The calculated results are as follows: r1 = 0.225, r2 = 0.503; Q1 = 0.413, e1 = 0.476; azeotropic point = 0.37. TGA and DTG curves indicated that Ml is a potential flame retarding monomer for styrenic polymers. C 2009 Yu Bin Zheng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘The copolymerization of styrene (St) with maleic anhydride (MAh) under gamma radiation at room temperature in the presence of benzyl dithiobenzoate (BDTB) was found to display 'living' nature evidenced by constant concentration of chain radicals during the copolymerization, linear evolution of molecular weights with conversion and narrow molecular weight distribution (M-w/M-n = 1.23-1.35). The compositional analysis and the sequence structural information of the copolymers obtained from DEPT (Distortionless Enhancement by Polarization Transfer) experiments demonstrate that the copolymers obtained also possess strictly alternating structure.
文摘With the advent of plastics and the wide range of fillers that are available have made modifications as precise as the tailored resins themselves. To modify the properties of polymer either by using fillers or by preparation of polymer blends gives rise to new materials with tailored properties. More complex, three-component systems, obtained by the addition of polymeric modifier to polymer filled composites may be of interest. Use of Fly ash cenospheres is very attractive because it is inexpensive and its use can reduce the environmental pollution to a significant extent. In the present study, Poly (Methyl Methacrylate) (PMMA)-Fly ash cenospheres composites were prepared using extrusion followed by Injection molding. The effect of matrix modification with Methyl methacrylate– acrylonitrile -butadiene–styrene (MABS) on the performance of PMMA- Fly ash cenospheres compositions was also, studied. It was found that with the addition of Fly ash cenospheres particulate as filler in PMMA showed marginal reduction in Tensile Strength, % Elongation and Impact strength and improvement in Flexural Strength, Heat Deflection Temperature and Vicat Softening Point. Compared with PMMA-cenospheres composites, the notched Impact Strength of the PMMA/MABS/cenospheres composites showed marginal enhancement in values at higher loading of cenospheres. The optimum performances in mechanical and thermal properties were obtained when the ratio of MABS to cenospheres was 1:2.
文摘The oil-in-water microemulsion containing N-butyl maleimide(NBMI. M_1) and styrene(St, M_2) was prepared. The complexation properties of NBMI and St in microemulsion were investigated by means of 1H-NMR. With the participation of charge-transfer complex(CTC). four reactivity ratios and the relative reactivity of free monomers and CTC were obtained. The result was compared with that measured by Mayo-Lewis method.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29774027).
文摘A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polymerization (ATRP) in thepreparation of 4-armed polystyrene (PSt) with narrow polydispersity. The structure, molecular weight and molecular weightdistribution (MWD) of each arm were studied by ~1H-NMR and GPC data of hydrolyzed products of the 4-armed PSt. TheATRP of St using 1/CuBr/bpy as initiator system is of 'living' character based on the following evidence: narrow MWD,constant concentration of chain radical during the polymerization, control of molecular weight by the molar ratio of monomerconsumed to 1. The 4-armed poly(St-b-p-nitrophenyl methacrylate) [poly(St-b-NPMA)] was prepared by the ATRP ofNPMA using 4-armed PSt with terminal bromine as the initiator, and characterized by FT-IR, ~1H-NMR spectra and GPCcurves. The micelles with PSt as core, and PNPMA as shell were formed by dropping DMSO into a solution of 4-armedpoly(St-b-NPMA) in DMF, as proved by laser light scatter (LLS) method.
基金Supported by Program for New Century Excellent Talents in University(NCET-07-0738)
文摘Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgA1-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgA1-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems. In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10^- 3 S·m^-1 was achieved for the polymer electrolyte.