Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL...Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.展开更多
INTRODUCTIONThe treatment of human epithelial malignancies islimited by drug resistance and toxic and side effects,which results in the failure in the treatment ofmajority of advanced cancer victims.To seek for anew,a...INTRODUCTIONThe treatment of human epithelial malignancies islimited by drug resistance and toxic and side effects,which results in the failure in the treatment ofmajority of advanced cancer victims.To seek for anew,and specific antineoplastic therapy willprovide hope for tumor treatment.Althoughdisordered intermediary metabolism in cancer cellshas been known for many years,much of the展开更多
Objective To explore the effects of zinc-0t2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HF1))-induced obesity in mice and the possible mechanism. Methods Thirty-six male mice were fed with ...Objective To explore the effects of zinc-0t2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HF1))-induced obesity in mice and the possible mechanism. Methods Thirty-six male mice were fed with standard food (SF) (n=9) and HFD (n=27), respectively. Five weeks later, 9 mice fed with HFD were subjected to ZAG expression plasmid DNA transfection by liposome transfection method, and another 9 mice to negative control plasmid transfection. Two weeks later, serum ZAG level in the mice was assayed by Western blot, and the effects of ZAG over-expression on body weight, body fat, serum biochemical indexes, and adipose tissue of obese mice were evaluated. The mRNA expressions of fatty acid synthase (FAS) and hormone sensitive lipase (HSL) in liver tissue were deterlnined by reverse transcription-polymerase chain reaction. Results Serum ZAG level significantly lowered in simple HFD-fed mice in comparison to SF-fed mice (0.51±0.10 AU vs. 0.75±0.07 AU, P〈0.01). Further statistical analysis demonstrated that ZAG level was negatively correlated with body weight (r =-0.56, P〈0.001), epididymal fat mass (r=-0.67, P〈O. 001), percentage of epididymal fat (r= 0.65, P〈0.001), and increased weight (r= 0.57, P〈0.001) in simple SF- and HFD fed mice. ZAG over-expression in obese mice reduced body weight and the percentage of epididyreal fat. Furthermore, FAS mRNA expression decreased (P〈0.01) and HSL mRNA expression increased (P〈0.001) in the liver in ZAG over-expressing mice. Conclusions ZAG is closely related to obesity. Serum ZAG level is inversely correlated with body weight and percentage of body fat. The action of ZAG is associated with reduced FAS expression and increased HSL expression in the liver of obese mice.展开更多
Objective:To study the correlation between hyaluronic acid(HA),hyaluronic acid synthase(HAS) and human renal clear cell carcinoma(RCCC).Methods:The expression of three HAS isoforms' gene and HA in 93 RCCC tis...Objective:To study the correlation between hyaluronic acid(HA),hyaluronic acid synthase(HAS) and human renal clear cell carcinoma(RCCC).Methods:The expression of three HAS isoforms' gene and HA in 93 RCCC tissues,27 nephridial tissues by the side of RCCC from two hospitals were measured with Real-Time RT-PCR、Western Blot and immunohistochemical methods and analyzed.Results:All RCCC and adjacent normal tissues expressed three HASs' mRNA protein;at the mRNA level,both RCCC and adjacent normal tissues,expressed more HAS3 than HAS1 or HAS2,their differences were statistically significant(all P values 0.05);but,at the protein level,all HAS isoforms presented the equivalent expression.Compared with the adjacent non-neoplastic kidney tissues,the expression of all HAS isoforms' mRNA in RCCC tissues were increased evidently and their differences were significant(all P values 0.0001);but at the protein level,only the expression of HAS3 increased evidently(P=0.022).In all adjacent normal tissues,more than 80% renal tubular cells strongly expressed HA,however,only the minority RCCC cases(16/93) presented weakly positive HA staining in few cancer nests(5%-30%),the difference were significant(P0.0001).In RCCC tissues subgrouped according to clinical stage,pathological grade,lymphatic metastasis or not and distant metastasis or not,the HASs' mRNA protein differential expression all had no statistical significance(all P values 0.05).Conclusion:Different from other malignancy,HA and HASs(except for HAS3) may not play important roles in the biological progress of human RCCC.展开更多
Objective: To determine fatty acid synthase (FAS) expression in human multiple myeloma and verify its potential as a therapeutic target in multiple myeloma. Methods: FAS expression was determined by immunohistoche...Objective: To determine fatty acid synthase (FAS) expression in human multiple myeloma and verify its potential as a therapeutic target in multiple myeloma. Methods: FAS expression was determined by immunohistochemistry, reverse-transcription polymerase chain reaction (RT-PCR) and immunoblot analysis in bone marrow samples obtained from 27 patients with multiple myeloma (MM patients) and peripheral blood mononuclear cells (PBMCs) obtained from 12 healthy donors In parallel, additional analyses were performed on 2 human multiple myeloma cell lines, U266 and RPM18226. U266 cells were treated with cerulenin at various concentrations (5 to 320 μg/ml) for 24 h, and metabolic activity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was evaluated by dual Annexin V/Pl (propidium iodide) labeling and flow cytometry (FCM) in U266 cells treated with 20 μg/ml cerulenin for 12 h or 24 h. Results: By immunohistochemistry, we found that 19 of 27 bone marrow samples obtained from MM patients expressed significantly high levels of FAS. Similarly, by RT-PCR, 22 of 27 bone marrow samples obtained from MM patients, U266 and RPM18226 showed FAS expression, whereas PBMC samples from 12 healthy donors did not express detectable level of FAS. FAS protein expression was confirmed by immunoblot analysis in 16 of 27 bone marrow samples obtained from MM patients, U266 and RPM18226 cell lines, and no FAS protein expression was detected in PBMC samples from 12 healthy donors. U266 cells were highly sensitive to cerulenin treatment, with a dosage-related effect on metabolic activity, as a measure for cell proliferation. U266 cells treated with 20 μg/ml cerulenin for 12 and 24 h also showed early sign of apoptosis with 56.9% and 69.3% Annexin V^+/Pl cells, and late apoptotic and necrotic cells with 3.2% and 17.6% Annexin V^+/Pl^+ cells. Conclusion: Increased FAS expression existed in multiple myeloma samples and human myeloma cell lines. Cerulenin greatly inhibited metabolic activity/cell proliferation of U266 cells and induced apoptosis, suggesting that FAS is an effective target for pharmacological therapy in human multiple myeloma.展开更多
Objective:Our aim was to test the hypothesis that fatty acid synthase(FASN)expression contributes to radioresistance of nasopharyngeal carcinoma(NPC)cells and that inhibiting FASN enhances radiosensitivity.Methods:Tar...Objective:Our aim was to test the hypothesis that fatty acid synthase(FASN)expression contributes to radioresistance of nasopharyngeal carcinoma(NPC)cells and that inhibiting FASN enhances radiosensitivity.Methods:Targeting FASN using epigallocatechin gallate(EGCG)or RNA interference in NPC cell lines that overexpress endogenous FASN was performed to determine their effects on cellular response to radiationin vitro using MTT and colony formation assays,andin vivo using xenograft animal models.Western blot,immunohistochemistry,real-time PCR arrays,and real-time RT-PCR were used to determine the relationship between FASN and frizzled class receptor 10(FZD10)expression.FZD10 knockdown and overexpression were used to determine its role in mediating FASN function in cellular response to radiation.Immunohistochemical staining was used to determine FASN and FZD10 expressions in human NPC tissues,followed by analysis of their association with the overall survival of patients.Results:FASN knockdown or inhibition significantly enhanced radiosensitivity of NPC cells,bothin vitro andin vivo.There was a positive association between FASN and FZD10 expression in NPC cell lines grown as monolayers or xenografts,as well as human tissues.FASN knockdown reduced FZD10 expression,and rescue of FZD10 expression abolished FASN knockdown-induced enhancement of radiosensitivity.FASN and FZD10 were both negatively associated with overall survival of NPC patients.Conclusions:FASN contributes to radioresistance,possiblyvia FZD10 in NPC cells.Both FZD10 and FASN expressions were associated with poor outcomes of NPC patients.EGCG may sensitize radioresistance by inhibiting FASN and may possibly be developed as a radiosensitizer for better treatment of NPCs.展开更多
Fatty acid synthase (FAS) attracts more and more attention recently as a potential target for metabolic syndrome,such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in pl...Fatty acid synthase (FAS) attracts more and more attention recently as a potential target for metabolic syndrome,such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in plants, consisting of diversiform compounds. These inhibitors exist not only in herbs also in many plant foods, such as teas, allium vegetables and some fruits. These effective components include gallated catechins, theaflavins,flavonoids, condensed and hydrolysable tannins, thioethers,pentacyclic triterpenes, stilbene derivatives, etc, and they target at the different domains of FAS, showing different inhibitory mechanisms. Interestingly, these FAS inhibitor-contained herbs and plant foods and their effective components are commonly related to the prevention of metabolic syndromes including fatreducing and depression of cancer. From biochemical angle,FAS can control the balance between energy provision and fat production. Some studies have shown that the effects of those effective components in plants on metabolic syndromes are mediated by inhibiting FAS. This suggests that FAS plays a critical role in the regulation of energy metabolism, and the FAS inhibitors from plants have significant potential application value in the treatment and prevention of metabolic syndromes.展开更多
The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that are critical for animal growth and development. Animals need to obtain BCAAs from their diet because they cannot syn...The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that are critical for animal growth and development. Animals need to obtain BCAAs from their diet because they cannot synthesize them. Plants are the ultimate source of these amino acids. Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of BCAAs. The metabolic control of BCAA biosynthesis involves allosteric regulation of ALS by the end-products of the pathway, i.e., valine, leucine and isoleucine. ALS holoenzyme seems to consist of two large catalytic subunits and two small regulatory subunits. In a previous study, using homologous recombination dependent gene targeting we created rice plants in which W548Land S627I mutations were induced into the endogenous gene encoding the ALS catalytic subunit. These two amino acid substitutions conferred hypertolerance to the ALS-inhibiting herbicide bispyripac-sodium. In this study, we revealed that feedback regulation by valine and leucine was reduced by these two amino acid substitutions. Furthermore, in leaves and seeds of ALS mutants with W548Land/or S627I substitution, a 2- to 3-fold increase in BCAAs was detected. Our results suggest that the ALS catalytic subunit is also involved in feedback regulation of ALS, and that judicious modification of the regulatory and catalytic subunits of ALS-coding genes by gene targeting can lead to the efficient accumulation of BCAA in plants.展开更多
BACKGROUND: Clinical practice and modern pharmacology have confirmed that chlorogenic acid can ameliorate learning and memory impairments. OBJECTIVE: To observe the effects of chlorogenic acid on neuronal nitric oxi...BACKGROUND: Clinical practice and modern pharmacology have confirmed that chlorogenic acid can ameliorate learning and memory impairments. OBJECTIVE: To observe the effects of chlorogenic acid on neuronal nitric oxide synthase (nNOS)-positive neurons in the mouse hippocampus, and to investigate the mechanisms underlying the beneficial effects of chlorogenic acid on learning and memory. DESIGN, TIME AND SETTING: The present randomized, controlled, neural cell morphological observation was performed at the Institute of Neurobiology, Central South University between January and May 2005. MATERIALS: Forty-eight female, healthy, adult, Kunming mice were included in this study. Learning and memory impairment was induced with an injection of 0.5 uL kainic acid (0.4 mg/mL) into the hippocampus. METHODS: The mice were randomized into three groups (n = 16): model, control, and chlorogenic acid-treated. At 2 days following learning and memory impairment induction, intragastric administration of physiological saline or chlorogenic acid was performed in the model and chlorogenic acid-treated groups, respectively. The control mice were administered 0.5uL physiological saline into the hippocampus, and 2 days later, they received an intragastfic administration of physiological saline. Each mouse received two intragastric administrations (1 mL solution once) per day, for a total of 35 days. MAIN OUTCOME MEASURES: Detection of changes in hippocampal and cerebral cortical nNOS neurons by immunohistochemistry; determination of spatial learning and memory utilizing the Y-maze device. RESULTS: At day 7 and 35 after intervention, there was no significant difference in the number of nNOS-positive neurons in the cerebral cortex between the model, chlorogenic acid, and control groups (P 〉 0.05). Compared with the control group, the number of nNOS-positive neurons in the hippocampal CA1-4 region was significantly less in the model group (P 〈 0.05). However, the control group was not different from the chlorogenic acid-treated group (P 〉 0.05). At day 7 following intervention, the number of correct responses in the Y-maze test was greater in the chlorogenic acid-treated group than in the model group. CONCLUSION: Chlorogenic acid protects kainic acid-induced injury to nNOS-positive neurons in the hippocampal CA1-4 regions, thereby ameliorating learning and memory impairment.展开更多
To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 diabetes, apoptosis was ind...To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 diabetes, apoptosis was induced by oleic acid (OA) in INS-1 cells and the activity of GSK-3 was inhibited by LiCl. The PI staining and flow cytometry were employed for the evaluation of apoptosis. The phosphorylation level of GSK-3 was detected by Western blotting. The results showed that OA at 0.4 mmol/L could cause conspicuous apoptosis of INS- 1 cells and the activity of GSK-3 was significantly increased. After the treatment with 24 mmolFL of LiCl, a inhibitor of GSK-3, the OA-induced apoptosis of INS-1 cells was lessened and the phosphorylation of GSK-3 was increased remarkably. It is concluded that GSK-3 activation plays an important role in OA-induced apoptosis in pancreatic β-cells and inhibition of the GSK-3 activity can effectively protect INS-1 cells from the OA-induced apoptosis. Our study provides a new experimental basis and target for the clinical treatment of type-2 diabetes.展开更多
BACKGROUND: Nitric oxide synthase (NOS) inhibrtors have been widely used to investigate the role of NO on cerebral ischemic injury, but the results are controversial. Moreover, it has been considered to aggravate t...BACKGROUND: Nitric oxide synthase (NOS) inhibrtors have been widely used to investigate the role of NO on cerebral ischemic injury, but the results are controversial. Moreover, it has been considered to aggravate the ischemic neuronal damage with the release of excessively excitatory amino acids (EAA) during cerebral ischemia. On the other hand, some inhibitory amino acid is suggested to be important for the neuronal protection against ischemic brain damage. Our study has recently showed that treatment with the NOS inhibitor NG-nitro-L-arginine (L-NA) reduced focal cerebral ischemic damage. The effect of L-NA on the contents of excitatory and inhibitory amino acid in the rat brain following cerebral ischemia is still unclear. OBJECTIVE: By evaluating the effect of NOS inhibitor, L-NA on the contents of aspartate, glutamate, glycine and γ-aminobutyric acid (GABA) in striatum, hippocampus and cortex in the rat brain following cerebral ischemia respectively, to investigate the beneficial effect of L-NA on cerebral ischemic injury and the possible mechanism. DESIGN: A randomized and controlled experiment SETTING : Department of Pharmacology, Hebei Academy of Medical Sciences MATERIALS: A total of 42 male healthy SD rats (grade Ⅱ, weighting 250-300 g) were provided by the Experimental Animal Center of Hebei Province (Certification: 04036). Aspartate, glutamate, glycine, GABA, L-NA and 2,3,5-triphenyltetrazolium chloride (TTC) were obtained from Sigma Chemicals Co, St Louis, MO, USA. HPLC-ultraviolet detector system consisted of Agilent 1100 HPLC. METHODS: The experiment was carried out in Department of Pharmrcology, Hebei Academy of Medical Sciences from June 2005 to June 2006. Rats were randomly divided into three groups: sham-operated group (n = 6), ischemic group (n = 18), L-NA group (n = 18). The model of focal cerebral ischemia in rat was prepared with intraluminal line occlusion methods. In sham-operated rats, the external carotid artery was surgically prepared, but the filament was not inserted. Each group was further divided into 3 subgroups (n = 6 for each): drugs were administrated at 2, 6 and 12 hours after the middle cerebral artery occlusion (MCAO) respectively. L-NA (20 mg/kg, ip) was administrated, twice a day, for 3 consecutive days. Same volume of normal saline was administrated in ischemic and sham operation groups. The changes of infarcted volume and the contents of amino acids were respectively assayed. Image analysis software was used for the measurement of the infarcted area. The results were expressed as a percentage of the infarcted volume of cerebral/volume of whole brain (IV%) in order to control for edema formation. The contents of aspartate, glutamate, glycine and GABA in striatum, hippocampus and cortex in the rat brain following cerebral ischemia were respectively measured by HPLC method. All data were analyzed with one-way ANOVA and Dunnett's test. MAIN OUTCOME MEASURES: (1) The volume of cerebral infarction; (2) The contents of aspartate, glutamate glycine and GABA in brain tissue after cerebral ischemia. RESULTS : All 42 rats were involved in the final analysis. (1) Infarcted volume: Volume was 0 in sham-operated group. When L-NA was administrated at 2 and 6 hours after MCAO, the infarcted volume was (20.13±3.59)% and (23.12±5.84)% in L-NA group, which was not similar to that in ischemic group [(22.10±3.98)%, (25.38± 5.37)%, P〉 0.05]. However, the infarcted volume was markedly decreased compared with that of ischemic group when L-NA was administrated at 12 hours after MCAO [(26.11±3.55)% and (37.15±3.58)%, P 〈 0.01]. Changes of amino acid content: At 2 and 6 hours after ischemia, the contents of aspartate, glutamate, glycine and GABA in striatum, hippocampus and cortex in ischemic group were significantly increased compared with those in sham-operated group ( P〈 0.05-0.01). However, contents in L-NA group were similar to those in ischemic group (P 〉 0.05). At 12 hours after ischemia, the contents of aspartate [(0.21 ±0.06), (0.36±0.05), (0.29±0.12) mg/g] and glutamate [(0.55±0.06), (0.78±0.10), (0.52±0.10) mg/g] in striatum, hippocampus and cortex in L-NA group were significantly decreased compared with those in ischemic group [(0.49±0.17), (0.63± 0.03), (0.51±0.15) mg/g; (0.98±0.30), (1.15±0.15), (0.93±0.15) mg/g, P〈 0.05-0.01]. Glycine in hippocampus was (0.40±0.07) mg/g, which was higher than that in ischemic group [(0.21±0.07) mg/g, P 〈 0.05]. GABA in striatum, hippocampus and cortex was (0.93±0.10), (0.62±0.12) and (0.81 ±0.10) mg/g, respectively, which was higher than that in ischemic group [(0.60±0.08), (0.37±0.17), (0.59±0.10) mg/g, P 〈 0.05-0.01]. CONCLUSION : It may be concluded that L-NA have beneficial effect on ischemic cerebral injury in ischemic later stage in rats. The possible mechanism is that L-NA can decrease the contents of aspartate and glutamate, increase the contents of glycine and GABA.展开更多
Background: The liver is the corner stone in lipid metabolism, free fatty acid uptake, synthesizing, storing and exporting lipids;non-alcoholic fatty liver disease (NAFLD) develops if there is any interruption or dera...Background: The liver is the corner stone in lipid metabolism, free fatty acid uptake, synthesizing, storing and exporting lipids;non-alcoholic fatty liver disease (NAFLD) develops if there is any interruption or derangements in lipid metabolim. Fatty acid synthase (FAS) is the major enzyme in lipogenesis, and its circulating level is a bi-omarker of metabolically demanding human diseases. Aim of the Work: To evaluate the level of circulating FAS in NAFLD patients and to correlate it to serum lipid pa-rameters. Materials and Methods: The study included forty NAFLD patients and forty age and sex-matched healthy subjects as controls. Results: FAS levels were signifi-cantly higher in NAFLD patients compared to their level in the controls (P < 0.05). Ad-ditionally, a positive correlation was found between the levels of FAS and BMI (r = 0.57), and between FAS levels and triglycerides and low density lipoprotein cholesterol levels in NAFLD patients (r = 0.79 & 0.53, respectively). Conclusion: Elevated levels of circulating FAS can be considered as a biomarker of fatty liver disease.展开更多
Objective: Functional significance of NO and central inhibitory neurotransmitter γ-aminobutyric(GABA) during seizures were investigated morphorlogically. Methods: A kainate-induced complex partialseizure model was us...Objective: Functional significance of NO and central inhibitory neurotransmitter γ-aminobutyric(GABA) during seizures were investigated morphorlogically. Methods: A kainate-induced complex partialseizure model was used in our experiment. Twenty SD rats were randomly divided into KA 30, 60, 90, 200min and control groups. The brain sections were stained by NADPh (nicotinamide adenine dinucleotide phosphate ) diaphorase (Nd ) histochemically, and were further stained by GABA immunohistochemically.Results: Histological and immunohistochemical study revealed that in KA groups the number of Nd and GABA-positive double labelled neurons in CA3 region, CA3 region and dentate gyms was significantly reduced,compared with the control group. Conclusion: Nd coexisted with GABA in the brain. Reduction of GABA release led to relief of GABA-ergic inhibition and in the same way, reduction of NO release weakened its negative feedback modulation. Therefore neuronal synchronous paroxysmal discharges increased. GABA and NO,both having antiepileptic action, acted through different ways or different link in the same way. NO may involve in the effect of GABA-ergic neurons and play cooperative antiepileptic action with GABA.展开更多
Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at...Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at endogenous salicylic acid (SA) levels and other senescence-related factors duringfruit ripening and softening at 20 ℃. The level of endogenous SA in ripening fruits declined and a closerelationship was observed between the change at endogenous SA level and the rate of fruit ripening andsoftening. ASA treatment elevated SA level in the fruit, slowed down the increases in lipoxygenase (LOX)and allene oxide synthase (AOS) activities, decreased the O22-. production in the preclimacteric phase andthe early phase of ethylene climacteric rise, maintained the stability of cell membrane, inhibited ethylenebiosynthesis, postponed the onset of the ethylene climacteric, and delayed the process of fruit ripeningand softening. On the contrary, application of ethylene to ripening kiwifruit resulted at a lower SA level, anaccelerated increases in the activities of LOX and AOS and the rate of O22-. production, an elevated relativeelectric conductivity and an advanced onset of ethylene climacteric, and a quicker fruit ripening andsoftening. It is suggested that the effects of ASA on ripening kiwifruit can be attributed to its ability toscavenge O22-. and/or to maintain stability of cell membrane.展开更多
Fatty acid synthase(FASN)is an essential molecule in lipid metabolic pathways,which are crucial for cancer-related studies.Recent studies have focused on a comprehensive understanding of the novel and important regula...Fatty acid synthase(FASN)is an essential molecule in lipid metabolic pathways,which are crucial for cancer-related studies.Recent studies have focused on a comprehensive understanding of the novel and important regulatory effects of FASN on malignant biological behavior and immune-cell infiltration,which are closely related to tumor occurrence and development,immune escape,and immune response.FASN-targeting antitumor treatment strategies are being developed.Therefore,in this review,we focused on the effects of FASN on tumor and immune-cell infiltration and reviewed the progress of related antitumor therapy development.展开更多
Decreased expression of brain-derived neurotrophic factor(BDNF) plays an important role in the pathogenesis of Alzheimer's disease, and a typical pathological change in Alzheimer's disease is neurofibrillary tangl...Decreased expression of brain-derived neurotrophic factor(BDNF) plays an important role in the pathogenesis of Alzheimer's disease, and a typical pathological change in Alzheimer's disease is neurofibrillary tangles caused by hyperphosphorylation of tau. An in vivo model of Alzheimer's disease was developed by injecting okadaic acid(2 μL) and exogenous BDNF(2 μL) into the hippocampi of adult male Wister rats. Spatial learning and memory abilities were assessed using the Morris water maze. The expression levels of protein phosphatase 2 A(PP2 A), PP2 Ac-Yp307, p-tau(Thr231), and p-tau(Ser396/404) were detected by western blot assay. The expression levels of BDNF, TrkB, and synaptophysin mRNA were measured by quantitative real-time polymerase chain reaction. Our results indicated that BDNF expression was suppressed in the hippocampus of OA-treated rats, which resulted in learning and memory deficits. Intra-hippocampal injection of BDNF attenuated this OA-induced cognitive impairment. Finally, our findings indicated an involvement of the PI3 K/GSK-3β/AKT pathway in the mechanism of BDNF in regulating cognitive function. These results indicate that BDNF has beneficial effect on Alzheimer's disease, and highlight the potential of BDNF as a drug target for treatment of Alzheimer's disease.展开更多
Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H2O2), calcium (Ca^2+)-calmodulin (CAM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant ...Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H2O2), calcium (Ca^2+)-calmodulin (CAM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H2O2, and CaCl2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca^2+-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca^2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Our results suggest that Ca^2+-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.展开更多
5-flurouracil(5-FU)-based chemotherapy is the main pharmacological therapy for advanced colorectal cancer(CRC).Despite significant progress in the treatment of CRC during the last decades,5-FU drug resistance remains ...5-flurouracil(5-FU)-based chemotherapy is the main pharmacological therapy for advanced colorectal cancer(CRC).Despite significant progress in the treatment of CRC during the last decades,5-FU drug resistance remains the most important cause of failure in CRC therapy.Resistance to 5-FU is a complex and multistep process.Different mechanisms including microsatellite instability,increased expression level of key enzyme thymidylate synthase and its polymorphism,increased level of 5-FU-activating enzymes and mutation of TP53 are proposed as the main determinants of resistance to 5-FU in CRC cells.Recently,microribonucleic acids(miRNA)and their alterations were found to have a crucial role in 5-FU resistance.In this regard,the miRNA-mediated mechanisms of 5-FU drug resistance reside among the new fields of pharmacogenetics of CRC drug response that has not been completely discovered.Identification of the biological markers that are related to response to 5-FU-based chemotherapy is an emerging field of precision medicine.This approach will have an important role in defining those patients who are most likely to benefit from 5-FU-based chemotherapy in the future.Thereby,the identification of 5-FU drug resistance mechanisms is an essential step to predict and eventually overcome resistance.In the present comprehensive review,we will summarize the latest knowledge regarding the molecular determinants of response to 5-FU-based chemotherapy in CRC by emphasizing the role of miRNAs.展开更多
5-Aminolevulinic acid (ALA) is a common precursor for tetrapyrrole compounds in all kinds of organ isms and has wide applications in agriculture and medicines. In this study, a new strategy, i.e. short-term dissolve...5-Aminolevulinic acid (ALA) is a common precursor for tetrapyrrole compounds in all kinds of organ isms and has wide applications in agriculture and medicines. In this study, a new strategy, i.e. short-term dissolved oxygen (DO) shock during aerobic fermentation, was introduced to produce 5-aminolevulinic acid with a recombi-nant E. coli. Effects of duration time of DO shock operation on plasmid concentration, intracellular ALA synthase (ALAS) activity and ALA production were investigated in Erlenmeyer shake flasks. The results indicated that both ALAS activity and ALA yield were enhanced in an anaerobic operation of 45 rain in the early exponential phase during fermentation, while they decreased when the anaerobic operation time was further increased to 60 rain. The DO shock protocol was confirmed with the fed-batch fermentation in a 15 L fermenter and the ALA production achieved 9.4 g.L-1 (72 mmol.L-1), which is the highest yield in the fermentation broth reported up to now.展开更多
Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factor...Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase,fatty acid synthase,fatty acid elongases,and desaturases.As a micronutrient,vitamin A is essential for the health of humans.Recently,vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism.This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis.It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo.It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis.Future research directions are also discussed.展开更多
基金supported by the National Natural Science Foundation of China(82222901,82103355,and 82272619)the Innovation and Technology Fund—Guangdong–Hong Kong Technology Cooperation Funding Scheme(GHP/086/21GD)+4 种基金the Research Grants Council(RGC)Theme-based Research Scheme(T12-703/19-R)the Research Grants Council-General Research Fund(14117422 and 14117123)the Health and Medical Research Fund,Hong Kong(08191336 and 07210097)the CUHK Research Startup Fund(FPU/2023/149)the Natural Science Foundation of Fujian Province(2020J01122587).
文摘Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis.
基金the Applied Science Foundation of Jiangsu Province,China,No.BJ97071
文摘INTRODUCTIONThe treatment of human epithelial malignancies islimited by drug resistance and toxic and side effects,which results in the failure in the treatment ofmajority of advanced cancer victims.To seek for anew,and specific antineoplastic therapy willprovide hope for tumor treatment.Althoughdisordered intermediary metabolism in cancer cellshas been known for many years,much of the
基金Supported by the National Natural Science Foundation of China (30771026)Beijing Natural Science Foundation (7082079)
文摘Objective To explore the effects of zinc-0t2-glycoprotein (ZAG) on body weight and body fat in high-fat-diet (HF1))-induced obesity in mice and the possible mechanism. Methods Thirty-six male mice were fed with standard food (SF) (n=9) and HFD (n=27), respectively. Five weeks later, 9 mice fed with HFD were subjected to ZAG expression plasmid DNA transfection by liposome transfection method, and another 9 mice to negative control plasmid transfection. Two weeks later, serum ZAG level in the mice was assayed by Western blot, and the effects of ZAG over-expression on body weight, body fat, serum biochemical indexes, and adipose tissue of obese mice were evaluated. The mRNA expressions of fatty acid synthase (FAS) and hormone sensitive lipase (HSL) in liver tissue were deterlnined by reverse transcription-polymerase chain reaction. Results Serum ZAG level significantly lowered in simple HFD-fed mice in comparison to SF-fed mice (0.51±0.10 AU vs. 0.75±0.07 AU, P〈0.01). Further statistical analysis demonstrated that ZAG level was negatively correlated with body weight (r =-0.56, P〈0.001), epididymal fat mass (r=-0.67, P〈O. 001), percentage of epididymal fat (r= 0.65, P〈0.001), and increased weight (r= 0.57, P〈0.001) in simple SF- and HFD fed mice. ZAG over-expression in obese mice reduced body weight and the percentage of epididyreal fat. Furthermore, FAS mRNA expression decreased (P〈0.01) and HSL mRNA expression increased (P〈0.001) in the liver in ZAG over-expressing mice. Conclusions ZAG is closely related to obesity. Serum ZAG level is inversely correlated with body weight and percentage of body fat. The action of ZAG is associated with reduced FAS expression and increased HSL expression in the liver of obese mice.
文摘Objective:To study the correlation between hyaluronic acid(HA),hyaluronic acid synthase(HAS) and human renal clear cell carcinoma(RCCC).Methods:The expression of three HAS isoforms' gene and HA in 93 RCCC tissues,27 nephridial tissues by the side of RCCC from two hospitals were measured with Real-Time RT-PCR、Western Blot and immunohistochemical methods and analyzed.Results:All RCCC and adjacent normal tissues expressed three HASs' mRNA protein;at the mRNA level,both RCCC and adjacent normal tissues,expressed more HAS3 than HAS1 or HAS2,their differences were statistically significant(all P values 0.05);but,at the protein level,all HAS isoforms presented the equivalent expression.Compared with the adjacent non-neoplastic kidney tissues,the expression of all HAS isoforms' mRNA in RCCC tissues were increased evidently and their differences were significant(all P values 0.0001);but at the protein level,only the expression of HAS3 increased evidently(P=0.022).In all adjacent normal tissues,more than 80% renal tubular cells strongly expressed HA,however,only the minority RCCC cases(16/93) presented weakly positive HA staining in few cancer nests(5%-30%),the difference were significant(P0.0001).In RCCC tissues subgrouped according to clinical stage,pathological grade,lymphatic metastasis or not and distant metastasis or not,the HASs' mRNA protein differential expression all had no statistical significance(all P values 0.05).Conclusion:Different from other malignancy,HA and HASs(except for HAS3) may not play important roles in the biological progress of human RCCC.
基金Project supported by the Medicine and Health Research Fund of Zhejiang Province(No.2007B091)the Office of Education of Zhejiang Province,China(No.20070104)
文摘Objective: To determine fatty acid synthase (FAS) expression in human multiple myeloma and verify its potential as a therapeutic target in multiple myeloma. Methods: FAS expression was determined by immunohistochemistry, reverse-transcription polymerase chain reaction (RT-PCR) and immunoblot analysis in bone marrow samples obtained from 27 patients with multiple myeloma (MM patients) and peripheral blood mononuclear cells (PBMCs) obtained from 12 healthy donors In parallel, additional analyses were performed on 2 human multiple myeloma cell lines, U266 and RPM18226. U266 cells were treated with cerulenin at various concentrations (5 to 320 μg/ml) for 24 h, and metabolic activity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was evaluated by dual Annexin V/Pl (propidium iodide) labeling and flow cytometry (FCM) in U266 cells treated with 20 μg/ml cerulenin for 12 h or 24 h. Results: By immunohistochemistry, we found that 19 of 27 bone marrow samples obtained from MM patients expressed significantly high levels of FAS. Similarly, by RT-PCR, 22 of 27 bone marrow samples obtained from MM patients, U266 and RPM18226 showed FAS expression, whereas PBMC samples from 12 healthy donors did not express detectable level of FAS. FAS protein expression was confirmed by immunoblot analysis in 16 of 27 bone marrow samples obtained from MM patients, U266 and RPM18226 cell lines, and no FAS protein expression was detected in PBMC samples from 12 healthy donors. U266 cells were highly sensitive to cerulenin treatment, with a dosage-related effect on metabolic activity, as a measure for cell proliferation. U266 cells treated with 20 μg/ml cerulenin for 12 and 24 h also showed early sign of apoptosis with 56.9% and 69.3% Annexin V^+/Pl cells, and late apoptotic and necrotic cells with 3.2% and 17.6% Annexin V^+/Pl^+ cells. Conclusion: Increased FAS expression existed in multiple myeloma samples and human myeloma cell lines. Cerulenin greatly inhibited metabolic activity/cell proliferation of U266 cells and induced apoptosis, suggesting that FAS is an effective target for pharmacological therapy in human multiple myeloma.
基金This work was supported by grants from the National Natural Science Foundation of China(Grant Nos.81572588,81872147)Shantou University Medical College Clinical Trial Uplift Program(Grant No.201423)+4 种基金the Medical Scientific Research Foundation of Guangdong Province,China(Grant No.B2018222)the Traditional Chinese Medicine Research Project from Traditional Chinese Medicine Bureau of Guangdong Province(Grant No.20191182)the Youth Research Grant from Shantou University Medical College Cancer Hospital(Grant No.2018A001,2018A008)the key Project of Science and Technology of Shantou[Grant No.(2018)37]and the Natural Science Foundation of Guangdong Province of China(Grant No.2020A1515010094).
文摘Objective:Our aim was to test the hypothesis that fatty acid synthase(FASN)expression contributes to radioresistance of nasopharyngeal carcinoma(NPC)cells and that inhibiting FASN enhances radiosensitivity.Methods:Targeting FASN using epigallocatechin gallate(EGCG)or RNA interference in NPC cell lines that overexpress endogenous FASN was performed to determine their effects on cellular response to radiationin vitro using MTT and colony formation assays,andin vivo using xenograft animal models.Western blot,immunohistochemistry,real-time PCR arrays,and real-time RT-PCR were used to determine the relationship between FASN and frizzled class receptor 10(FZD10)expression.FZD10 knockdown and overexpression were used to determine its role in mediating FASN function in cellular response to radiation.Immunohistochemical staining was used to determine FASN and FZD10 expressions in human NPC tissues,followed by analysis of their association with the overall survival of patients.Results:FASN knockdown or inhibition significantly enhanced radiosensitivity of NPC cells,bothin vitro andin vivo.There was a positive association between FASN and FZD10 expression in NPC cell lines grown as monolayers or xenografts,as well as human tissues.FASN knockdown reduced FZD10 expression,and rescue of FZD10 expression abolished FASN knockdown-induced enhancement of radiosensitivity.FASN and FZD10 were both negatively associated with overall survival of NPC patients.Conclusions:FASN contributes to radioresistance,possiblyvia FZD10 in NPC cells.Both FZD10 and FASN expressions were associated with poor outcomes of NPC patients.EGCG may sensitize radioresistance by inhibiting FASN and may possibly be developed as a radiosensitizer for better treatment of NPCs.
文摘Fatty acid synthase (FAS) attracts more and more attention recently as a potential target for metabolic syndrome,such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in plants, consisting of diversiform compounds. These inhibitors exist not only in herbs also in many plant foods, such as teas, allium vegetables and some fruits. These effective components include gallated catechins, theaflavins,flavonoids, condensed and hydrolysable tannins, thioethers,pentacyclic triterpenes, stilbene derivatives, etc, and they target at the different domains of FAS, showing different inhibitory mechanisms. Interestingly, these FAS inhibitor-contained herbs and plant foods and their effective components are commonly related to the prevention of metabolic syndromes including fatreducing and depression of cancer. From biochemical angle,FAS can control the balance between energy provision and fat production. Some studies have shown that the effects of those effective components in plants on metabolic syndromes are mediated by inhibiting FAS. This suggests that FAS plays a critical role in the regulation of energy metabolism, and the FAS inhibitors from plants have significant potential application value in the treatment and prevention of metabolic syndromes.
文摘The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that are critical for animal growth and development. Animals need to obtain BCAAs from their diet because they cannot synthesize them. Plants are the ultimate source of these amino acids. Acetolactate synthase (ALS) is the first common enzyme in the biosynthesis of BCAAs. The metabolic control of BCAA biosynthesis involves allosteric regulation of ALS by the end-products of the pathway, i.e., valine, leucine and isoleucine. ALS holoenzyme seems to consist of two large catalytic subunits and two small regulatory subunits. In a previous study, using homologous recombination dependent gene targeting we created rice plants in which W548Land S627I mutations were induced into the endogenous gene encoding the ALS catalytic subunit. These two amino acid substitutions conferred hypertolerance to the ALS-inhibiting herbicide bispyripac-sodium. In this study, we revealed that feedback regulation by valine and leucine was reduced by these two amino acid substitutions. Furthermore, in leaves and seeds of ALS mutants with W548Land/or S627I substitution, a 2- to 3-fold increase in BCAAs was detected. Our results suggest that the ALS catalytic subunit is also involved in feedback regulation of ALS, and that judicious modification of the regulatory and catalytic subunits of ALS-coding genes by gene targeting can lead to the efficient accumulation of BCAA in plants.
文摘BACKGROUND: Clinical practice and modern pharmacology have confirmed that chlorogenic acid can ameliorate learning and memory impairments. OBJECTIVE: To observe the effects of chlorogenic acid on neuronal nitric oxide synthase (nNOS)-positive neurons in the mouse hippocampus, and to investigate the mechanisms underlying the beneficial effects of chlorogenic acid on learning and memory. DESIGN, TIME AND SETTING: The present randomized, controlled, neural cell morphological observation was performed at the Institute of Neurobiology, Central South University between January and May 2005. MATERIALS: Forty-eight female, healthy, adult, Kunming mice were included in this study. Learning and memory impairment was induced with an injection of 0.5 uL kainic acid (0.4 mg/mL) into the hippocampus. METHODS: The mice were randomized into three groups (n = 16): model, control, and chlorogenic acid-treated. At 2 days following learning and memory impairment induction, intragastric administration of physiological saline or chlorogenic acid was performed in the model and chlorogenic acid-treated groups, respectively. The control mice were administered 0.5uL physiological saline into the hippocampus, and 2 days later, they received an intragastfic administration of physiological saline. Each mouse received two intragastric administrations (1 mL solution once) per day, for a total of 35 days. MAIN OUTCOME MEASURES: Detection of changes in hippocampal and cerebral cortical nNOS neurons by immunohistochemistry; determination of spatial learning and memory utilizing the Y-maze device. RESULTS: At day 7 and 35 after intervention, there was no significant difference in the number of nNOS-positive neurons in the cerebral cortex between the model, chlorogenic acid, and control groups (P 〉 0.05). Compared with the control group, the number of nNOS-positive neurons in the hippocampal CA1-4 region was significantly less in the model group (P 〈 0.05). However, the control group was not different from the chlorogenic acid-treated group (P 〉 0.05). At day 7 following intervention, the number of correct responses in the Y-maze test was greater in the chlorogenic acid-treated group than in the model group. CONCLUSION: Chlorogenic acid protects kainic acid-induced injury to nNOS-positive neurons in the hippocampal CA1-4 regions, thereby ameliorating learning and memory impairment.
基金This project was supported by a grant from National Natural Sciences Foundation of China (No 30672262)
文摘To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 diabetes, apoptosis was induced by oleic acid (OA) in INS-1 cells and the activity of GSK-3 was inhibited by LiCl. The PI staining and flow cytometry were employed for the evaluation of apoptosis. The phosphorylation level of GSK-3 was detected by Western blotting. The results showed that OA at 0.4 mmol/L could cause conspicuous apoptosis of INS- 1 cells and the activity of GSK-3 was significantly increased. After the treatment with 24 mmolFL of LiCl, a inhibitor of GSK-3, the OA-induced apoptosis of INS-1 cells was lessened and the phosphorylation of GSK-3 was increased remarkably. It is concluded that GSK-3 activation plays an important role in OA-induced apoptosis in pancreatic β-cells and inhibition of the GSK-3 activity can effectively protect INS-1 cells from the OA-induced apoptosis. Our study provides a new experimental basis and target for the clinical treatment of type-2 diabetes.
基金the Natural Sci-ence Foundation of HebeiProvince, No. C2005000840
文摘BACKGROUND: Nitric oxide synthase (NOS) inhibrtors have been widely used to investigate the role of NO on cerebral ischemic injury, but the results are controversial. Moreover, it has been considered to aggravate the ischemic neuronal damage with the release of excessively excitatory amino acids (EAA) during cerebral ischemia. On the other hand, some inhibitory amino acid is suggested to be important for the neuronal protection against ischemic brain damage. Our study has recently showed that treatment with the NOS inhibitor NG-nitro-L-arginine (L-NA) reduced focal cerebral ischemic damage. The effect of L-NA on the contents of excitatory and inhibitory amino acid in the rat brain following cerebral ischemia is still unclear. OBJECTIVE: By evaluating the effect of NOS inhibitor, L-NA on the contents of aspartate, glutamate, glycine and γ-aminobutyric acid (GABA) in striatum, hippocampus and cortex in the rat brain following cerebral ischemia respectively, to investigate the beneficial effect of L-NA on cerebral ischemic injury and the possible mechanism. DESIGN: A randomized and controlled experiment SETTING : Department of Pharmacology, Hebei Academy of Medical Sciences MATERIALS: A total of 42 male healthy SD rats (grade Ⅱ, weighting 250-300 g) were provided by the Experimental Animal Center of Hebei Province (Certification: 04036). Aspartate, glutamate, glycine, GABA, L-NA and 2,3,5-triphenyltetrazolium chloride (TTC) were obtained from Sigma Chemicals Co, St Louis, MO, USA. HPLC-ultraviolet detector system consisted of Agilent 1100 HPLC. METHODS: The experiment was carried out in Department of Pharmrcology, Hebei Academy of Medical Sciences from June 2005 to June 2006. Rats were randomly divided into three groups: sham-operated group (n = 6), ischemic group (n = 18), L-NA group (n = 18). The model of focal cerebral ischemia in rat was prepared with intraluminal line occlusion methods. In sham-operated rats, the external carotid artery was surgically prepared, but the filament was not inserted. Each group was further divided into 3 subgroups (n = 6 for each): drugs were administrated at 2, 6 and 12 hours after the middle cerebral artery occlusion (MCAO) respectively. L-NA (20 mg/kg, ip) was administrated, twice a day, for 3 consecutive days. Same volume of normal saline was administrated in ischemic and sham operation groups. The changes of infarcted volume and the contents of amino acids were respectively assayed. Image analysis software was used for the measurement of the infarcted area. The results were expressed as a percentage of the infarcted volume of cerebral/volume of whole brain (IV%) in order to control for edema formation. The contents of aspartate, glutamate, glycine and GABA in striatum, hippocampus and cortex in the rat brain following cerebral ischemia were respectively measured by HPLC method. All data were analyzed with one-way ANOVA and Dunnett's test. MAIN OUTCOME MEASURES: (1) The volume of cerebral infarction; (2) The contents of aspartate, glutamate glycine and GABA in brain tissue after cerebral ischemia. RESULTS : All 42 rats were involved in the final analysis. (1) Infarcted volume: Volume was 0 in sham-operated group. When L-NA was administrated at 2 and 6 hours after MCAO, the infarcted volume was (20.13±3.59)% and (23.12±5.84)% in L-NA group, which was not similar to that in ischemic group [(22.10±3.98)%, (25.38± 5.37)%, P〉 0.05]. However, the infarcted volume was markedly decreased compared with that of ischemic group when L-NA was administrated at 12 hours after MCAO [(26.11±3.55)% and (37.15±3.58)%, P 〈 0.01]. Changes of amino acid content: At 2 and 6 hours after ischemia, the contents of aspartate, glutamate, glycine and GABA in striatum, hippocampus and cortex in ischemic group were significantly increased compared with those in sham-operated group ( P〈 0.05-0.01). However, contents in L-NA group were similar to those in ischemic group (P 〉 0.05). At 12 hours after ischemia, the contents of aspartate [(0.21 ±0.06), (0.36±0.05), (0.29±0.12) mg/g] and glutamate [(0.55±0.06), (0.78±0.10), (0.52±0.10) mg/g] in striatum, hippocampus and cortex in L-NA group were significantly decreased compared with those in ischemic group [(0.49±0.17), (0.63± 0.03), (0.51±0.15) mg/g; (0.98±0.30), (1.15±0.15), (0.93±0.15) mg/g, P〈 0.05-0.01]. Glycine in hippocampus was (0.40±0.07) mg/g, which was higher than that in ischemic group [(0.21±0.07) mg/g, P 〈 0.05]. GABA in striatum, hippocampus and cortex was (0.93±0.10), (0.62±0.12) and (0.81 ±0.10) mg/g, respectively, which was higher than that in ischemic group [(0.60±0.08), (0.37±0.17), (0.59±0.10) mg/g, P 〈 0.05-0.01]. CONCLUSION : It may be concluded that L-NA have beneficial effect on ischemic cerebral injury in ischemic later stage in rats. The possible mechanism is that L-NA can decrease the contents of aspartate and glutamate, increase the contents of glycine and GABA.
文摘Background: The liver is the corner stone in lipid metabolism, free fatty acid uptake, synthesizing, storing and exporting lipids;non-alcoholic fatty liver disease (NAFLD) develops if there is any interruption or derangements in lipid metabolim. Fatty acid synthase (FAS) is the major enzyme in lipogenesis, and its circulating level is a bi-omarker of metabolically demanding human diseases. Aim of the Work: To evaluate the level of circulating FAS in NAFLD patients and to correlate it to serum lipid pa-rameters. Materials and Methods: The study included forty NAFLD patients and forty age and sex-matched healthy subjects as controls. Results: FAS levels were signifi-cantly higher in NAFLD patients compared to their level in the controls (P < 0.05). Ad-ditionally, a positive correlation was found between the levels of FAS and BMI (r = 0.57), and between FAS levels and triglycerides and low density lipoprotein cholesterol levels in NAFLD patients (r = 0.79 & 0.53, respectively). Conclusion: Elevated levels of circulating FAS can be considered as a biomarker of fatty liver disease.
文摘Objective: Functional significance of NO and central inhibitory neurotransmitter γ-aminobutyric(GABA) during seizures were investigated morphorlogically. Methods: A kainate-induced complex partialseizure model was used in our experiment. Twenty SD rats were randomly divided into KA 30, 60, 90, 200min and control groups. The brain sections were stained by NADPh (nicotinamide adenine dinucleotide phosphate ) diaphorase (Nd ) histochemically, and were further stained by GABA immunohistochemically.Results: Histological and immunohistochemical study revealed that in KA groups the number of Nd and GABA-positive double labelled neurons in CA3 region, CA3 region and dentate gyms was significantly reduced,compared with the control group. Conclusion: Nd coexisted with GABA in the brain. Reduction of GABA release led to relief of GABA-ergic inhibition and in the same way, reduction of NO release weakened its negative feedback modulation. Therefore neuronal synchronous paroxysmal discharges increased. GABA and NO,both having antiepileptic action, acted through different ways or different link in the same way. NO may involve in the effect of GABA-ergic neurons and play cooperative antiepileptic action with GABA.
文摘Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at endogenous salicylic acid (SA) levels and other senescence-related factors duringfruit ripening and softening at 20 ℃. The level of endogenous SA in ripening fruits declined and a closerelationship was observed between the change at endogenous SA level and the rate of fruit ripening andsoftening. ASA treatment elevated SA level in the fruit, slowed down the increases in lipoxygenase (LOX)and allene oxide synthase (AOS) activities, decreased the O22-. production in the preclimacteric phase andthe early phase of ethylene climacteric rise, maintained the stability of cell membrane, inhibited ethylenebiosynthesis, postponed the onset of the ethylene climacteric, and delayed the process of fruit ripeningand softening. On the contrary, application of ethylene to ripening kiwifruit resulted at a lower SA level, anaccelerated increases in the activities of LOX and AOS and the rate of O22-. production, an elevated relativeelectric conductivity and an advanced onset of ethylene climacteric, and a quicker fruit ripening andsoftening. It is suggested that the effects of ASA on ripening kiwifruit can be attributed to its ability toscavenge O22-. and/or to maintain stability of cell membrane.
基金supported by grants from the Jilin Provincial Science and Technology Department(No.20190303146SF)Jilin Provincial Department of Finance Project(No.JLSWSRCZX2020-0023).
文摘Fatty acid synthase(FASN)is an essential molecule in lipid metabolic pathways,which are crucial for cancer-related studies.Recent studies have focused on a comprehensive understanding of the novel and important regulatory effects of FASN on malignant biological behavior and immune-cell infiltration,which are closely related to tumor occurrence and development,immune escape,and immune response.FASN-targeting antitumor treatment strategies are being developed.Therefore,in this review,we focused on the effects of FASN on tumor and immune-cell infiltration and reviewed the progress of related antitumor therapy development.
文摘Decreased expression of brain-derived neurotrophic factor(BDNF) plays an important role in the pathogenesis of Alzheimer's disease, and a typical pathological change in Alzheimer's disease is neurofibrillary tangles caused by hyperphosphorylation of tau. An in vivo model of Alzheimer's disease was developed by injecting okadaic acid(2 μL) and exogenous BDNF(2 μL) into the hippocampi of adult male Wister rats. Spatial learning and memory abilities were assessed using the Morris water maze. The expression levels of protein phosphatase 2 A(PP2 A), PP2 Ac-Yp307, p-tau(Thr231), and p-tau(Ser396/404) were detected by western blot assay. The expression levels of BDNF, TrkB, and synaptophysin mRNA were measured by quantitative real-time polymerase chain reaction. Our results indicated that BDNF expression was suppressed in the hippocampus of OA-treated rats, which resulted in learning and memory deficits. Intra-hippocampal injection of BDNF attenuated this OA-induced cognitive impairment. Finally, our findings indicated an involvement of the PI3 K/GSK-3β/AKT pathway in the mechanism of BDNF in regulating cognitive function. These results indicate that BDNF has beneficial effect on Alzheimer's disease, and highlight the potential of BDNF as a drug target for treatment of Alzheimer's disease.
基金Acknowledgments This work was supported by the Major State Basic Research Program of China (grant no. 2003CB 114302 to M Jiang), the National Natural Science Foundation of China (grant no. 30571122 to M Jiang), and the Youth Scientific and Technological Innovation talent Project of Jiangsu Province (grant no. BK2007575 to A Zhang).
文摘Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H2O2), calcium (Ca^2+)-calmodulin (CAM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H2O2, and CaCl2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca^2+-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca^2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Our results suggest that Ca^2+-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.
文摘5-flurouracil(5-FU)-based chemotherapy is the main pharmacological therapy for advanced colorectal cancer(CRC).Despite significant progress in the treatment of CRC during the last decades,5-FU drug resistance remains the most important cause of failure in CRC therapy.Resistance to 5-FU is a complex and multistep process.Different mechanisms including microsatellite instability,increased expression level of key enzyme thymidylate synthase and its polymorphism,increased level of 5-FU-activating enzymes and mutation of TP53 are proposed as the main determinants of resistance to 5-FU in CRC cells.Recently,microribonucleic acids(miRNA)and their alterations were found to have a crucial role in 5-FU resistance.In this regard,the miRNA-mediated mechanisms of 5-FU drug resistance reside among the new fields of pharmacogenetics of CRC drug response that has not been completely discovered.Identification of the biological markers that are related to response to 5-FU-based chemotherapy is an emerging field of precision medicine.This approach will have an important role in defining those patients who are most likely to benefit from 5-FU-based chemotherapy in the future.Thereby,the identification of 5-FU drug resistance mechanisms is an essential step to predict and eventually overcome resistance.In the present comprehensive review,we will summarize the latest knowledge regarding the molecular determinants of response to 5-FU-based chemotherapy in CRC by emphasizing the role of miRNAs.
基金Supported by the National Natural Science Foundation of China (20306026 and 20876141) and the National Basic Research program of China (2007CB707805).
文摘5-Aminolevulinic acid (ALA) is a common precursor for tetrapyrrole compounds in all kinds of organ isms and has wide applications in agriculture and medicines. In this study, a new strategy, i.e. short-term dissolved oxygen (DO) shock during aerobic fermentation, was introduced to produce 5-aminolevulinic acid with a recombi-nant E. coli. Effects of duration time of DO shock operation on plasmid concentration, intracellular ALA synthase (ALAS) activity and ALA production were investigated in Erlenmeyer shake flasks. The results indicated that both ALAS activity and ALA yield were enhanced in an anaerobic operation of 45 rain in the early exponential phase during fermentation, while they decreased when the anaerobic operation time was further increased to 60 rain. The DO shock protocol was confirmed with the fed-batch fermentation in a 15 L fermenter and the ALA production achieved 9.4 g.L-1 (72 mmol.L-1), which is the highest yield in the fermentation broth reported up to now.
基金Supported by the Financial Support of the Overseas Training Program for Outstanding Young and Middle-Aged Teachers in Universities in Jiangsu Province,China(to Yang FC).
文摘Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase,fatty acid synthase,fatty acid elongases,and desaturases.As a micronutrient,vitamin A is essential for the health of humans.Recently,vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism.This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis.It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo.It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis.Future research directions are also discussed.