A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbo...A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.展开更多
To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Four...To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectrometer, elemental analyzer, tensile-testing machine and high-temperature differential scanning calorimeter (DSC) are used to characterize the individual microstructure, chemical structure, elemental content, mechanical properties and thermal properties. It is found that high-quality PAN fibers have high density, lower titre, higher or adequate tensile strength, and they also have better conglomeration structure, smaller crystal dimension with dispersive distribution, less microvoids and flaws.展开更多
Supercapacitors have huge potential applications in the field of wearable electronic devices,such as flexible displays,flexible biosensors and implantable multimedia devices,due to their high-power density,fast charge...Supercapacitors have huge potential applications in the field of wearable electronic devices,such as flexible displays,flexible biosensors and implantable multimedia devices,due to their high-power density,fast charge-discharge rates,long cycling life,and relatively simple configuration.In this paper,we demonstrated hierarchically porous and continuous reduced graphene oxide-polyacrylonitrile@polyacrylonitrile(rGO-PAN@PAN)coaxial fibers with certain strength,excellent electrochemical performance through coaxial wet spinning and thermal reduction.Coaxial fibers are carbonized at high temperature and have a graded porous structure with a conductivity of 1703 S/m.The areal specific capacitance of the supercapacitor assembled by polyvinyl alcohol/sulfuric acid(PVA/H_(2)SO_(4))gel electrolyte is 11.56 mF/cm^(2),and its energy density reaches 0.21 mW·h/cm3,showing good electrochemical performance.Graphene-based coaxial fibers prepared by wet spinning have a great prospect of application in electronic devices due to their excellent properties.展开更多
Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron ...Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5% which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.展开更多
In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for prepar...In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for preparing ACFs. Firstly, the webs were stabilized under different pre-oxidation conditions; secondly, the pre-oxidative fibers were chemically activated by high temperature treatment in nitrogen. Pre-oxidation temperature, heating rate, and treatment time are the main factors on affecting the adsorption performance of the ACFs. Scanning electron microscope ( SEM), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and property of the pre-oxldatlve fibers, and the dynamic benzene adsorption capacity of benzene of ACFs was measured. The results indicate that the moderate pre-oxidation condition is necessary to prepare the ACFs with better adsorption capacity, and the optimal oxidation conditions are to increase from room temperature to 230 ~C with a heating rate of 0.75 ~C ~ min -1 held at the peak temperature for 30min.展开更多
The dynamic property of polyacrylonitrile (PAN) muscles was tested. The test results can help us to master PAN muscles' mechanical and chemical behaviors, which are indispensable for us to build dynamic model for ...The dynamic property of polyacrylonitrile (PAN) muscles was tested. The test results can help us to master PAN muscles' mechanical and chemical behaviors, which are indispensable for us to build dynamic model for the artificial muscle. Furthermore, here we provide an important experimental way to study gel muscles.展开更多
PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exc...PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exchange technology. SEM and FT-IR/ATR spectra were employed to analyze the reaction and the presence of the amide groups. The thickness of the polyacrylic acid (PAA) layer on the membrane surface measured by ion-exchange titration technology increased with the reaction time, and that on membrane hydrolyzed for 50 min could reach 10.8 nm. Streaming potential measurement was used to study the influence of the carboxylic and nitrile group on the membrane surface on their separation property. Zeta potential measured in pure water had close relationship with the permeation property. This measurement also proved that there was a maximum zeta potential between zero and the concentration tested. For the ionization or dissociation of the carboxylic group on the membrane surface, treated membranes had a more flexible zeta potential range than that of the untreated membrane in the pH range of 3-9. They were all negative in pure water and 1 g·L-1 KCl solution, while the membranes hydrolyzed for 30 min and 50min had IEPs at pH 5.5 and 6.1 in 1 g·L-1 MgCl2 solution. Special inflection points of all the membranes were observed in AlCl3 solution for the positive colloid structure of Al(OH)3.展开更多
基金Project(2006CB600903) supported by the National Basic Research Program of China
文摘A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.
文摘To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectrometer, elemental analyzer, tensile-testing machine and high-temperature differential scanning calorimeter (DSC) are used to characterize the individual microstructure, chemical structure, elemental content, mechanical properties and thermal properties. It is found that high-quality PAN fibers have high density, lower titre, higher or adequate tensile strength, and they also have better conglomeration structure, smaller crystal dimension with dispersive distribution, less microvoids and flaws.
基金National Natural Science Foundation of China(No.51876115)China Postdoctoral Science Foundation(No.2019M661324)。
文摘Supercapacitors have huge potential applications in the field of wearable electronic devices,such as flexible displays,flexible biosensors and implantable multimedia devices,due to their high-power density,fast charge-discharge rates,long cycling life,and relatively simple configuration.In this paper,we demonstrated hierarchically porous and continuous reduced graphene oxide-polyacrylonitrile@polyacrylonitrile(rGO-PAN@PAN)coaxial fibers with certain strength,excellent electrochemical performance through coaxial wet spinning and thermal reduction.Coaxial fibers are carbonized at high temperature and have a graded porous structure with a conductivity of 1703 S/m.The areal specific capacitance of the supercapacitor assembled by polyvinyl alcohol/sulfuric acid(PVA/H_(2)SO_(4))gel electrolyte is 11.56 mF/cm^(2),and its energy density reaches 0.21 mW·h/cm3,showing good electrochemical performance.Graphene-based coaxial fibers prepared by wet spinning have a great prospect of application in electronic devices due to their excellent properties.
基金This work was financially supported by the National Nat-ural Science Foundation of China(Grant No.50172004 and 50333070).
文摘Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5% which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.
文摘In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for preparing ACFs. Firstly, the webs were stabilized under different pre-oxidation conditions; secondly, the pre-oxidative fibers were chemically activated by high temperature treatment in nitrogen. Pre-oxidation temperature, heating rate, and treatment time are the main factors on affecting the adsorption performance of the ACFs. Scanning electron microscope ( SEM), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and property of the pre-oxldatlve fibers, and the dynamic benzene adsorption capacity of benzene of ACFs was measured. The results indicate that the moderate pre-oxidation condition is necessary to prepare the ACFs with better adsorption capacity, and the optimal oxidation conditions are to increase from room temperature to 230 ~C with a heating rate of 0.75 ~C ~ min -1 held at the peak temperature for 30min.
文摘The dynamic property of polyacrylonitrile (PAN) muscles was tested. The test results can help us to master PAN muscles' mechanical and chemical behaviors, which are indispensable for us to build dynamic model for the artificial muscle. Furthermore, here we provide an important experimental way to study gel muscles.
文摘PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exchange technology. SEM and FT-IR/ATR spectra were employed to analyze the reaction and the presence of the amide groups. The thickness of the polyacrylic acid (PAA) layer on the membrane surface measured by ion-exchange titration technology increased with the reaction time, and that on membrane hydrolyzed for 50 min could reach 10.8 nm. Streaming potential measurement was used to study the influence of the carboxylic and nitrile group on the membrane surface on their separation property. Zeta potential measured in pure water had close relationship with the permeation property. This measurement also proved that there was a maximum zeta potential between zero and the concentration tested. For the ionization or dissociation of the carboxylic group on the membrane surface, treated membranes had a more flexible zeta potential range than that of the untreated membrane in the pH range of 3-9. They were all negative in pure water and 1 g·L-1 KCl solution, while the membranes hydrolyzed for 30 min and 50min had IEPs at pH 5.5 and 6.1 in 1 g·L-1 MgCl2 solution. Special inflection points of all the membranes were observed in AlCl3 solution for the positive colloid structure of Al(OH)3.