Polyamines (mainly putrescine (Put), spermidine (Spd), and spermine (Spin)) have been widely found in a range of physiological processes and in almost all diverse environ- mental stresses. In various plant spe...Polyamines (mainly putrescine (Put), spermidine (Spd), and spermine (Spin)) have been widely found in a range of physiological processes and in almost all diverse environ- mental stresses. In various plant species, abiotic stresses modulated the accumulation of polyamines and related gene expression. Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses, and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway. Additionally, puta- tive mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine, abscisic acid, and nitric oxide in plant responses to abiotic stress were emphasized. Special attention was paid to the interaction between polyamine and reactive oxygen species, ion channels, amino acid and carbon metabolism, and other adaptive responses. Further studies are needed to elucidate the polyamine signaling pathway, especially polyamine-regulated downstream tar- gets and the connections between polyamines and other stress responsive molecules.展开更多
基金supported by "the Hundred Talents Program," the Knowledge Innovative Key Program of the Chinese Academy of Sciences (No. Y154761O01076 and Y329631O0263) to Zhulong Chanby the National Natural Science Foundation of China to Zhulong Chan (No. 31370302) and Haitao Shi (No. 31200194)
文摘Polyamines (mainly putrescine (Put), spermidine (Spd), and spermine (Spin)) have been widely found in a range of physiological processes and in almost all diverse environ- mental stresses. In various plant species, abiotic stresses modulated the accumulation of polyamines and related gene expression. Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses, and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway. Additionally, puta- tive mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine, abscisic acid, and nitric oxide in plant responses to abiotic stress were emphasized. Special attention was paid to the interaction between polyamine and reactive oxygen species, ion channels, amino acid and carbon metabolism, and other adaptive responses. Further studies are needed to elucidate the polyamine signaling pathway, especially polyamine-regulated downstream tar- gets and the connections between polyamines and other stress responsive molecules.