Three polyamines(PAs)(spermidine(Spd),spermine(Spm),and putrescine(Put))were used as growth regulators to the marine macroalgae Gracilariopsis lemaneiformis and to female gametophyte and reproductive tissues(cystocarp...Three polyamines(PAs)(spermidine(Spd),spermine(Spm),and putrescine(Put))were used as growth regulators to the marine macroalgae Gracilariopsis lemaneiformis and to female gametophyte and reproductive tissues(cystocarps were constructed),which led to early maturation of cystocarps and spore release.Laboratory cultivation revealed that exogenous PA application accelerated the development of cystocarps,and the mean sporeling growth rate was 20%–50%/d during the initial week of cultivation.The spore count(SC),survival rate(SR),and germination rate(GR)of G.lemaneiformis showed different responses to PA(10-6 mol/L and 10-3 mol/L)treatments under different temperatures(18,26,and 34℃),light intensities(30,60,and 90μmol photons/(m^(2)·s)),salinities(25,30,and 35),and nutrient levels(25꞉2.5,50꞉5.0,and 75꞉7.5μmol/L NH4Cl꞉K2HPO4),and the optimal conditions were 26℃,light intensity of 60μmol/(m^(2)·s),salinity of 35,and nutrient level of 50꞉5.0μmol/L NH4Cl꞉K2HPO4.Under the optimum conditions,the SC per cystocarp increased by 82.38%,and the spore SR and GR increased by 33.07%and 46.44%,respectively.Each experiment lasted for 7 days,with the highest SC on Day 4 and plateauing on Day 7.The results indicate that PAs could promote the early maturation,spore release,survival,and germination of G.lemaneiformis under laboratory conditions.展开更多
When the 7_d old barley ( Hordeum vulgare L.) seedlings were treated with different concentrations of NaCl for 3 d, the levels of the noncovalently conjugated polyamines (PAs) in the plasma membrane and tonoplast v...When the 7_d old barley ( Hordeum vulgare L.) seedlings were treated with different concentrations of NaCl for 3 d, the levels of the noncovalently conjugated polyamines (PAs) in the plasma membrane and tonoplast vesicles and the covalently conjugated PAs in the membrane proteins were promoted by NaCl of low concentrations and suppressed by NaCl of high concentrations. Among the noncovalently conjugated PAs in the vesicles, spermidine (Spd) level was the most abundant, while putrescine (Put) content was predominant among the covalently conjugated PAs, accounted for 40%-70%, 35%-60%, respectively. In addition, the TLC (thin_layer chromatography) profiles of the benzoylated PAs presented an unknown polyamine with Rf =0.92 (X 0.92 ), which conjugated covalently and noncovalently in root tonoplast and its content changed as well as Spd with NaCl treatment. The total PA contents in the roots were higher than that in the leaves, and the types and contents of covalently and noncovalently conjugated PAs in the tonoplast were higher than those in the plasma membrane. The results showed that the above two PAs associated with the membrane might be essential in salt adaption of cells and the maintenance of membrane function.展开更多
The seeds of barley Hordeum vulgare L. cv. Jian 4) were soaked with 0.1 mmol/L putrescine (Put) and 0.5 mmol/L spermidine (Spd), and then the seedlings were treated with 200 mmol/L NaCl. The growth rate (GR), dry matt...The seeds of barley Hordeum vulgare L. cv. Jian 4) were soaked with 0.1 mmol/L putrescine (Put) and 0.5 mmol/L spermidine (Spd), and then the seedlings were treated with 200 mmol/L NaCl. The growth rate (GR), dry matter accumulation, distribution of ions, the amount of polyamines (PAs) bound to tonoplast proteins as well as lipid composition and the activity of tonoplast vesicles isolated from roots were investigated. The results showed that soaking with Put or Spd could retard salt injury, promote GR and dry matter accumulation, and increase K+/Na+ in the roots. Compared with NaCl_treated plants, phospholipid content in root tonoplast rose by soaking with Put and Spd, while the level of galactose in lipids was decreased. Moreover, the ratio in noncovalently conjugated PA contents of (Spd+PAx (an unknown PA)) to (Put+Dap (diaminopropane)), and the total contents of covalently and noncovalently conjugated PAs were all increased. Statistical analysis indicated that the ratio of (Spd+PAx) to (Put+Dap) was significantly and positively correlated with the activities of membrane associated enzymes H+_ATPase and H+_PPase.展开更多
Salt stress is one of the worldwide abiotic stresses resulting in growth re- duction, chlorosis, wilting, and plant death. These exhibitions might result from men- tal toxicity and osmotic stress induced by salt. The ...Salt stress is one of the worldwide abiotic stresses resulting in growth re- duction, chlorosis, wilting, and plant death. These exhibitions might result from men- tal toxicity and osmotic stress induced by salt. The two aspects of stress would af- fect vital metabolic pathways, reactive oxygen species scavenging system, lipid per- oxidation and photosynthetic apparatus. Thus, exploring ways to improve crop pro- ductivity or alleviate harmful effects under salt is one of the major areas of concern. Polyamines are aliphatic nitrogen organic cations which are implicated in a wide range of plant physiological processes such as morphogenesis, flower differentiation and initiation, they also play a role in biotic or abiotic stress responses. At the physiological level, polyamines modify the activities of many enzymes included in salt stress response and can bond to photosynthetic apparatus, thus changing the photosynthetic efficiency. At molecular level, polyamines can modify expressions of the polyamine-related genes directly or indirectly. Significant researches had been done to understand the effects of polyamines on plant salt resistance, but several questions still need to be answered. The present review is focused specifically on the effects of polyamines on physiological and molecular changes in plants under salt stress.展开更多
Polyamine metabolism dysregulation is a hallmark of many cancers,offering a promising avenue for early tumor theranostics.This study presents the development of a nuclear probe derived from spermidine(SPM)for dual-pur...Polyamine metabolism dysregulation is a hallmark of many cancers,offering a promising avenue for early tumor theranostics.This study presents the development of a nuclear probe derived from spermidine(SPM)for dual-purpose tumor PET imaging and internal radiation therapy.The probe,radiolabeled with either[68Ga]Ga for diagnostic applications or[177Lu]Lu for therapeutic use,was synthesized with exceptional purity,stability,and specific activity.Extensive testing involving 12 different tumor cell lines revealed remarkable specificity towards B16 melanoma cells,showcasing outstanding tumor localization and target-to-non-target ratio.Mechanistic investigations employing polyamines,non-labeled precursor,and polyamine transport system(PTS)inhibitor,consistently affirmed the probe?s targetability through recognition of the PTS.Notably,while previous reports indicated PTS upregulation in various tumor types for targeted therapy,this study observed no positive signals,highlighting a concentration-dependent discrepancy between targeting for therapy and diagnosis.Furthermore,when labeled with[177Lu],the probe demonstrated its therapeutic potential by effectively controlling tumor growth and extending mouse survival.Investigations into biodistribution,excretion,and biosafety in healthy humans laid a robust foundation for clinical translation.This study introduces a versatile SPM-based nuclear probe with applications in precise tumor theranostics,offering promising prospects for clinical implementation.展开更多
Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of ...Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress,mitochondrial metabolism,cellular immunity,and ion channel functions.Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases.Therefore,in the current work,evidence was collected to determine the possible associations between cellular levels of PAs,and related enzymes and the development of several neurodegenerative diseases,which could provide a new idea for the treatment of neurodegenerative diseases in the future.展开更多
基金Supported by the National Key R&D Program of China(No.2018YFD0901502)the Ningbo Key R&D Science and Technology Program(Nos.2019B10009,2021Z114)the Natural Science Foundation of Zhejiang Province(Nos.LY19C190003,LQ20C190002)。
文摘Three polyamines(PAs)(spermidine(Spd),spermine(Spm),and putrescine(Put))were used as growth regulators to the marine macroalgae Gracilariopsis lemaneiformis and to female gametophyte and reproductive tissues(cystocarps were constructed),which led to early maturation of cystocarps and spore release.Laboratory cultivation revealed that exogenous PA application accelerated the development of cystocarps,and the mean sporeling growth rate was 20%–50%/d during the initial week of cultivation.The spore count(SC),survival rate(SR),and germination rate(GR)of G.lemaneiformis showed different responses to PA(10-6 mol/L and 10-3 mol/L)treatments under different temperatures(18,26,and 34℃),light intensities(30,60,and 90μmol photons/(m^(2)·s)),salinities(25,30,and 35),and nutrient levels(25꞉2.5,50꞉5.0,and 75꞉7.5μmol/L NH4Cl꞉K2HPO4),and the optimal conditions were 26℃,light intensity of 60μmol/(m^(2)·s),salinity of 35,and nutrient level of 50꞉5.0μmol/L NH4Cl꞉K2HPO4.Under the optimum conditions,the SC per cystocarp increased by 82.38%,and the spore SR and GR increased by 33.07%and 46.44%,respectively.Each experiment lasted for 7 days,with the highest SC on Day 4 and plateauing on Day 7.The results indicate that PAs could promote the early maturation,spore release,survival,and germination of G.lemaneiformis under laboratory conditions.
文摘When the 7_d old barley ( Hordeum vulgare L.) seedlings were treated with different concentrations of NaCl for 3 d, the levels of the noncovalently conjugated polyamines (PAs) in the plasma membrane and tonoplast vesicles and the covalently conjugated PAs in the membrane proteins were promoted by NaCl of low concentrations and suppressed by NaCl of high concentrations. Among the noncovalently conjugated PAs in the vesicles, spermidine (Spd) level was the most abundant, while putrescine (Put) content was predominant among the covalently conjugated PAs, accounted for 40%-70%, 35%-60%, respectively. In addition, the TLC (thin_layer chromatography) profiles of the benzoylated PAs presented an unknown polyamine with Rf =0.92 (X 0.92 ), which conjugated covalently and noncovalently in root tonoplast and its content changed as well as Spd with NaCl treatment. The total PA contents in the roots were higher than that in the leaves, and the types and contents of covalently and noncovalently conjugated PAs in the tonoplast were higher than those in the plasma membrane. The results showed that the above two PAs associated with the membrane might be essential in salt adaption of cells and the maintenance of membrane function.
文摘The seeds of barley Hordeum vulgare L. cv. Jian 4) were soaked with 0.1 mmol/L putrescine (Put) and 0.5 mmol/L spermidine (Spd), and then the seedlings were treated with 200 mmol/L NaCl. The growth rate (GR), dry matter accumulation, distribution of ions, the amount of polyamines (PAs) bound to tonoplast proteins as well as lipid composition and the activity of tonoplast vesicles isolated from roots were investigated. The results showed that soaking with Put or Spd could retard salt injury, promote GR and dry matter accumulation, and increase K+/Na+ in the roots. Compared with NaCl_treated plants, phospholipid content in root tonoplast rose by soaking with Put and Spd, while the level of galactose in lipids was decreased. Moreover, the ratio in noncovalently conjugated PA contents of (Spd+PAx (an unknown PA)) to (Put+Dap (diaminopropane)), and the total contents of covalently and noncovalently conjugated PAs were all increased. Statistical analysis indicated that the ratio of (Spd+PAx) to (Put+Dap) was significantly and positively correlated with the activities of membrane associated enzymes H+_ATPase and H+_PPase.
基金Supported by the National Natural Science Foundation of China(31101117)National Key Technology Research and Development Program of China during the 12th Five-year Plan Period(2011BAD16B05,2012BAD04B13,2013BAD07B13)Rice Breeding Project in Sichuan Province of China(2011NZ0098-15)~~
文摘Salt stress is one of the worldwide abiotic stresses resulting in growth re- duction, chlorosis, wilting, and plant death. These exhibitions might result from men- tal toxicity and osmotic stress induced by salt. The two aspects of stress would af- fect vital metabolic pathways, reactive oxygen species scavenging system, lipid per- oxidation and photosynthetic apparatus. Thus, exploring ways to improve crop pro- ductivity or alleviate harmful effects under salt is one of the major areas of concern. Polyamines are aliphatic nitrogen organic cations which are implicated in a wide range of plant physiological processes such as morphogenesis, flower differentiation and initiation, they also play a role in biotic or abiotic stress responses. At the physiological level, polyamines modify the activities of many enzymes included in salt stress response and can bond to photosynthetic apparatus, thus changing the photosynthetic efficiency. At molecular level, polyamines can modify expressions of the polyamine-related genes directly or indirectly. Significant researches had been done to understand the effects of polyamines on plant salt resistance, but several questions still need to be answered. The present review is focused specifically on the effects of polyamines on physiological and molecular changes in plants under salt stress.
基金supported by the Science and Technology Innovation Team Talent Project of Hunan Province(No.2021RC4056)the clinical research foundation of the National Clinical Research Center for Geriatric Diseases(XIANGYA)(No.2020LNJJ01)+1 种基金the Natural Science Foundation of Hunan Province in China(No.2021JJ20084)the Science and Technology Innovation Program of Hunan Province(No.2021RC3020)。
文摘Polyamine metabolism dysregulation is a hallmark of many cancers,offering a promising avenue for early tumor theranostics.This study presents the development of a nuclear probe derived from spermidine(SPM)for dual-purpose tumor PET imaging and internal radiation therapy.The probe,radiolabeled with either[68Ga]Ga for diagnostic applications or[177Lu]Lu for therapeutic use,was synthesized with exceptional purity,stability,and specific activity.Extensive testing involving 12 different tumor cell lines revealed remarkable specificity towards B16 melanoma cells,showcasing outstanding tumor localization and target-to-non-target ratio.Mechanistic investigations employing polyamines,non-labeled precursor,and polyamine transport system(PTS)inhibitor,consistently affirmed the probe?s targetability through recognition of the PTS.Notably,while previous reports indicated PTS upregulation in various tumor types for targeted therapy,this study observed no positive signals,highlighting a concentration-dependent discrepancy between targeting for therapy and diagnosis.Furthermore,when labeled with[177Lu],the probe demonstrated its therapeutic potential by effectively controlling tumor growth and extending mouse survival.Investigations into biodistribution,excretion,and biosafety in healthy humans laid a robust foundation for clinical translation.This study introduces a versatile SPM-based nuclear probe with applications in precise tumor theranostics,offering promising prospects for clinical implementation.
基金supported by grants from Zhejiang Provincial Natural Science Foundation of China(No.LY19H260003)Zhejiang Medical Health Science and Technology Project of China(No.2024KY1661).
文摘Recent studies have shown that cellular levels of polyamines(PAs)are significantly altered in neurodegenerative diseases.Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress,mitochondrial metabolism,cellular immunity,and ion channel functions.Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases.Therefore,in the current work,evidence was collected to determine the possible associations between cellular levels of PAs,and related enzymes and the development of several neurodegenerative diseases,which could provide a new idea for the treatment of neurodegenerative diseases in the future.