This work was dedicated to performing surface oxidation and coating treatments on carbon fibers (CF) and investigating the changes of fiber surface properties after these treatments, including surface composition, r...This work was dedicated to performing surface oxidation and coating treatments on carbon fibers (CF) and investigating the changes of fiber surface properties after these treatments, including surface composition, relative volume of functional groups, and surface topography with X-ray photoelectron spectroscopy (XPS) and atom force microscopy (AFM) technology. The results show that, after oxidation treatments, interfacial properties between CF and non-polar polyarylacetylene (PAA) resin are remarkably modified by removing weak surface layers and increasing fiber surface roughness. Coating treatment by high char phenolic resin solution after oxidation makes interface of CF/PAA composites to be upgraded and the interfacial properties further bettered.展开更多
High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor ...High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor and hot isostatic pressure impregnation and carbonization(HIPIC)technology,which is time-consuming and expensive.In this study,we report an innovative method utilizing polyarylacetylene(PAA)resin and ultra-high pressure impregnation and carbonization(UHPIC)technology.The extremely high char yield of PAA resin(85 wt.%)and high isotropic pressure of UHPIC(over 200 MPa)promote the densification of the composite.As a result,we achieve a high-density(1.90 g/cm^(3))C/C composite with a high degree of graphitization(81%).This composite exhibits impressive properties,including flexural strength of 146 MPa,compressive strength of 187 MPa,and thermal conductivity of 147 W/(m K).When exposed to oxyacetylene flame at 3000 K for 100 s,it displays minimal linear ablation,with a rate of 1.27×10^(-2)mm/s.This study demonstrates the exceptional graphitizable characteristic of PAA resin,setting it apart from conventional resins.Our time-saving and cost-effective approach holds significant promise for aerospace applications,particularly in harsh aerodynamic heating environments.展开更多
文摘This work was dedicated to performing surface oxidation and coating treatments on carbon fibers (CF) and investigating the changes of fiber surface properties after these treatments, including surface composition, relative volume of functional groups, and surface topography with X-ray photoelectron spectroscopy (XPS) and atom force microscopy (AFM) technology. The results show that, after oxidation treatments, interfacial properties between CF and non-polar polyarylacetylene (PAA) resin are remarkably modified by removing weak surface layers and increasing fiber surface roughness. Coating treatment by high char phenolic resin solution after oxidation makes interface of CF/PAA composites to be upgraded and the interfacial properties further bettered.
基金supported by the Major Program of National Natural Science Foundation of China(No.52293372).
文摘High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor and hot isostatic pressure impregnation and carbonization(HIPIC)technology,which is time-consuming and expensive.In this study,we report an innovative method utilizing polyarylacetylene(PAA)resin and ultra-high pressure impregnation and carbonization(UHPIC)technology.The extremely high char yield of PAA resin(85 wt.%)and high isotropic pressure of UHPIC(over 200 MPa)promote the densification of the composite.As a result,we achieve a high-density(1.90 g/cm^(3))C/C composite with a high degree of graphitization(81%).This composite exhibits impressive properties,including flexural strength of 146 MPa,compressive strength of 187 MPa,and thermal conductivity of 147 W/(m K).When exposed to oxyacetylene flame at 3000 K for 100 s,it displays minimal linear ablation,with a rate of 1.27×10^(-2)mm/s.This study demonstrates the exceptional graphitizable characteristic of PAA resin,setting it apart from conventional resins.Our time-saving and cost-effective approach holds significant promise for aerospace applications,particularly in harsh aerodynamic heating environments.