Polycystins are key mechanosensor proteins able to respond to mechanical forces of external or internal origin. They are widely expressed in primary cilium and plasma membrane of several cell types including kidney, v...Polycystins are key mechanosensor proteins able to respond to mechanical forces of external or internal origin. They are widely expressed in primary cilium and plasma membrane of several cell types including kidney, vascular endothelial and smooth muscle cells,osteoblasts and cardiac myocytes modulating their physiology. Interaction of polycystins with diverse ion channels, cell-cell and cell-extracellular matrix junctional proteins implicates them in the regulation of cell structure, mechanical force transmission and mechanotransduction. Their intracellular localization in endoplasmic reticulum further regulates subcellular trafficking and calcium homeostasis, finely-tuning overall cellular mechanosensitivity. Aberrant expression or genetic alterations of polycystins lead to severe structural and mechanosensing abnormalities including cyst formation, deregulated flow sensing, aneurysms,defective bone development and cancer progression,highlighting their vital role in human physiology.展开更多
文摘Polycystins are key mechanosensor proteins able to respond to mechanical forces of external or internal origin. They are widely expressed in primary cilium and plasma membrane of several cell types including kidney, vascular endothelial and smooth muscle cells,osteoblasts and cardiac myocytes modulating their physiology. Interaction of polycystins with diverse ion channels, cell-cell and cell-extracellular matrix junctional proteins implicates them in the regulation of cell structure, mechanical force transmission and mechanotransduction. Their intracellular localization in endoplasmic reticulum further regulates subcellular trafficking and calcium homeostasis, finely-tuning overall cellular mechanosensitivity. Aberrant expression or genetic alterations of polycystins lead to severe structural and mechanosensing abnormalities including cyst formation, deregulated flow sensing, aneurysms,defective bone development and cancer progression,highlighting their vital role in human physiology.
文摘触脑脊液神经元(cerebrospinal fluid-contacting neurons,CSF-cNs)是一种分布于脑室、中央管、脑室周器及脑实质等处与脑脊液接触的特殊神经元。根据分布位置不同可将CSF-cNs分为室管膜上、室管膜下和远位CSF-cNs三类,不同部位的CSF-cNs分泌不同的神经递质。以往研究CSF-cNs多采用脑室注射辣根过氧化物酶标记的霍乱毒素B亚单位(cholera toxin subunit B labeled with horseradish peroxidase,CB-HRP)进行逆行追踪.