Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been foun...Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been found that the hydrogen bond effects in TPU decrease with the increase of temperature. The temperature dependence of hydrogen bonding in TPU’s can be described by the Arrhenius equation, and the activation energy of hydrogen bonding as well as the physical cross-link density have been calculated.展开更多
The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were stud...The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.展开更多
This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works wer...This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works were conducted on the relationships between rheological, optical properties, morphology, mechanical properties, abrasion resistance and thermostability given. The results showed that the shear viscosity of SBS not obvious effect with TPU content. The optical properties of the SBS/TPU blend that its uniform transparency. The morphology characteristics indicating the phase diversion and the variation in the size of the SBS domains from large to small as the TPU contents increased, with heterogeneous domain dispersions. Additionally, the mechanical properties, abrasion resistance and thermal resistance are improved as the amount of added TPU is increased, suggesting that the blending of SBS with TPU is consistent with the compound rule.展开更多
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi...Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.展开更多
A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers (TPEURs) with good thermal and mechanical properties. Three prepolymers of 1,6-bis...A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers (TPEURs) with good thermal and mechanical properties. Three prepolymers of 1,6-bis(hydroxyethyloxycarbonylamino) hexane (BHCH), i.e. PrePBHCHs, were prepared through the self-transurethane polycondensation of BHCH. A poly(butylene adipate) prepolymer (PrePBA) with terminal HO-- groups was prepared and used as a polyester glycol. A series of TPEURs were prepared by the co-polycondensation of the PrePBHCHs with PrePBA at 170 ℃under a reduced pressure of 399 Pa. The TPEURs were characterized by gel permeation chromatography, FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. The TPEURs exhibited Mn up to 23300 g/mol, Mw up to 51100 g/mol, Tg ranging from -33.8 ℃ to -3.1 ℃, Tm from 94.3 ℃ to 111.9 ℃, initial decomposition temperature over 274.7℃, tensile strength up to18.8 MPa with a strain at break of 450.0%, and resilience up to 77.5%. TPU elastomers with good crystallization and mechanical properties were obtained through a non-isocyanate route.展开更多
Black phosphorus(BP), as one of the most promising fillers for flame retarding polymer, has been seriously limited in practical application, due to the agglomeration and poor structural stability challenges.Here, the ...Black phosphorus(BP), as one of the most promising fillers for flame retarding polymer, has been seriously limited in practical application, due to the agglomeration and poor structural stability challenges.Here, the BP was modified by MXene and polydopamine(PDA) via ultrasonication and dopamine modification strategy to improve the structural stability and dispersibility in the matrix. Then, the obtained(BP-MXene@PDA) nanohybrid was employed to promote the mechanical performance, thermal stability,and flame retardancy of thermoplastic polyurethane elastomer(TPU). The resultant TPU composite containing 2 wt.% of BP1-MXene2@PDA showed a 19.2% improvement in the tensile strength and a 13.8%increase in the elongation at break compared to those of the pure TPU. The thermogravimetric analysis suggested that BP-MXene@PDA clearly enhances the thermal stability of TPU composites. Furthermore,the introduction of the BP-MXene@PDA nanohybrids could considerably improve the flame retardancy of TPU composite, i.e., 64.2% and 27.3% decrease in peak heat release rate and total heat release, respectively. The flame-retardant mechanisms of TPU/BP-MXene@PDA in the gas phase and condensed phase were investigated systematically. This work provides a novel strategy to simultaneously enhance the fire safety and mechanical properties of TPU, thus expanding its industrial applications.展开更多
文摘Hydrogen bond effects in thermoplastic polyurethane elastomers (TPU) with different chain extender structures and hard segment contents have been studied quantitatively by dynamic mechanical analysis. It has been found that the hydrogen bond effects in TPU decrease with the increase of temperature. The temperature dependence of hydrogen bonding in TPU’s can be described by the Arrhenius equation, and the activation energy of hydrogen bonding as well as the physical cross-link density have been calculated.
基金Supported by the Key Subject Construction Project of Shanghai Educational Com mittee(No. 13980 70 2 )
文摘The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4'-diphenylmethane diisocyanate, N -methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Van't Hoff plot.
文摘This investigation presents thermoplastic elastomers (TPEs) based on poly (styrene-butadiene-styrene) (SBS) and thermoplastic polyurethane (TPU) materials were prepared with varying compositions. A series of works were conducted on the relationships between rheological, optical properties, morphology, mechanical properties, abrasion resistance and thermostability given. The results showed that the shear viscosity of SBS not obvious effect with TPU content. The optical properties of the SBS/TPU blend that its uniform transparency. The morphology characteristics indicating the phase diversion and the variation in the size of the SBS domains from large to small as the TPU contents increased, with heterogeneous domain dispersions. Additionally, the mechanical properties, abrasion resistance and thermal resistance are improved as the amount of added TPU is increased, suggesting that the blending of SBS with TPU is consistent with the compound rule.
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China(No.51873126)the Fundamental Research Funds for the Central Universities,as well as the funding from the Science&Technology Department(No.2021YFH0123)of Sichuan Province.
文摘Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity.
基金financially supported by the National Natural Science Foundation of China(Nos.21244006 and 50873013)
文摘A simple non-isocyanate route is developed for synthesizing crystallizable aliphatic thermoplastic poly(ester urethane) elastomers (TPEURs) with good thermal and mechanical properties. Three prepolymers of 1,6-bis(hydroxyethyloxycarbonylamino) hexane (BHCH), i.e. PrePBHCHs, were prepared through the self-transurethane polycondensation of BHCH. A poly(butylene adipate) prepolymer (PrePBA) with terminal HO-- groups was prepared and used as a polyester glycol. A series of TPEURs were prepared by the co-polycondensation of the PrePBHCHs with PrePBA at 170 ℃under a reduced pressure of 399 Pa. The TPEURs were characterized by gel permeation chromatography, FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. The TPEURs exhibited Mn up to 23300 g/mol, Mw up to 51100 g/mol, Tg ranging from -33.8 ℃ to -3.1 ℃, Tm from 94.3 ℃ to 111.9 ℃, initial decomposition temperature over 274.7℃, tensile strength up to18.8 MPa with a strain at break of 450.0%, and resilience up to 77.5%. TPU elastomers with good crystallization and mechanical properties were obtained through a non-isocyanate route.
基金supported by the National Natural Science Foundation of China(No.21908031)Scientific Research Funds of Yunnan Education Department(No.2021Y111)。
文摘Black phosphorus(BP), as one of the most promising fillers for flame retarding polymer, has been seriously limited in practical application, due to the agglomeration and poor structural stability challenges.Here, the BP was modified by MXene and polydopamine(PDA) via ultrasonication and dopamine modification strategy to improve the structural stability and dispersibility in the matrix. Then, the obtained(BP-MXene@PDA) nanohybrid was employed to promote the mechanical performance, thermal stability,and flame retardancy of thermoplastic polyurethane elastomer(TPU). The resultant TPU composite containing 2 wt.% of BP1-MXene2@PDA showed a 19.2% improvement in the tensile strength and a 13.8%increase in the elongation at break compared to those of the pure TPU. The thermogravimetric analysis suggested that BP-MXene@PDA clearly enhances the thermal stability of TPU composites. Furthermore,the introduction of the BP-MXene@PDA nanohybrids could considerably improve the flame retardancy of TPU composite, i.e., 64.2% and 27.3% decrease in peak heat release rate and total heat release, respectively. The flame-retardant mechanisms of TPU/BP-MXene@PDA in the gas phase and condensed phase were investigated systematically. This work provides a novel strategy to simultaneously enhance the fire safety and mechanical properties of TPU, thus expanding its industrial applications.