期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Progressive Failure Analysis of Quasi-isotropic Self-reinforced Polyethylene Composites by Comparing Unsupervised and Supervised Classifications of Acoustic Emission Data
1
作者 杨璧玲 黄龙全 梁海先 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期468-473,共6页
Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the... Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the various mechanisms in the multiangle-ply thermoplastic composites. Ultra-high molecular weight polyethylene / low density polyethylene( UHMWPE / LDPE)composites were made and tested under quasi-static tensile load. The failure process was monitored by the AE technique. The collected AE signals were classified by unsupervised and supervised PR techniques, respectively. AE signals were clustered with unsupervised PR scheme automatically and mathematically. While in the supervised PR scheme,the labeled AE data from simple lay-up UHMWPE / LDPE laminates were utilized as the reference data.Comparison was drawn according to the analytical results. Fracture surfaces of the UHMWPE / LDPE specimens were observed by a scanning electron microscope( SEM) for some physical support. By combining both classification results with the observation results,correlations were established between the AE signal classes and their originating damage modes. The comparison between the two classifying schemes showed a good agreement in the main damage modes and their failure process. It indicates both PR techniques are powerful for the complicated thermoplastic composites. Supervised PR scheme can lead to a more precise classification in that a suitable reference data set is input. 展开更多
关键词 ultra-high molecular weight polyethylene / low density polyethylene(UHMWPE / LDPE) composites THERMOPLASTIC progressive failure analysis damage modes pattern recognition(PR) acoustic emission(AE)
下载PDF
Thermal conductivity and mechanical properties of high density polyethylene composites filled with silicon carbide whiskers modified by cross-linked poly (vinyl alcohol) 被引量:5
2
作者 Jiaming Fan Shiai Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第12期2407-2414,共8页
A thin layer of poly(vinyl alcohol)(PVA) was coated on the surface of silicon carbide whiskers(SCWs)and crosslinked by glutaraldehyde, and then these modified whiskers(mSCWs) were incorporated into high density polyet... A thin layer of poly(vinyl alcohol)(PVA) was coated on the surface of silicon carbide whiskers(SCWs)and crosslinked by glutaraldehyde, and then these modified whiskers(mSCWs) were incorporated into high density polyethylene(HDPE) to prepare HDPE/mSCW composites with a high thermal conductivity.The thermal conductivity, mechanical properties, heat resistance, thermal stability and morphology of HDPE/mSCW and HDPE/SCW composites were characterized and compared. The results reveal that the thermal conductivity of both HDPE/SCW and HDPE/mSCW composites increases with the increase of filler loading, and reaches a maximum of 1.48 and 1.69 W/(m K) at 40 wt% filler loading, which is 251.20% and 300.75% higher than that of HDPE, respectively. Significantly, HDPE/mSCW composites have a higher thermal conductivity than their HDPE/SCW counterparts with the same filler loading. In addition, the heat resistance, Young’s modulus and yield strength of both HDPE/SCW and HDPE/mSCW composites are also improved compared with that of HDPE. mSCW can be homogenously dispersed in the HDPE matrix, which contributes to the formation of thermally conductive networks by the inter-connection of mSCWs. 展开更多
关键词 polyethylene composites Silicon carbide WHISKER Thermal conductivity
原文传递
In-situ Composite Based on Poly (ethylene terephthalate),Polyamide and Polyethylene with Microfibres Formed through Extrusion and Hot Stretching 被引量:8
3
作者 ZhongmingLI MingboYANG +2 位作者 RuiHUANG AiLU JianminFENG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期419-422,共4页
In-situ composites based on dispersed poly (ethylene terephthalate) (PET) or polyamide (PA), and continuous polyethylene (PE) were prepared through a single screw extruder of Haake rheometer system with a rod-die rela... In-situ composites based on dispersed poly (ethylene terephthalate) (PET) or polyamide (PA), and continuous polyethylene (PE) were prepared through a single screw extruder of Haake rheometer system with a rod-die relatively small in diameter. The extrudate was drawn at a drawing ratio of 3.1, and then quickly cooled in cold water. The specimens were obtained by injection molding at processing temperatures less than 190℃, far below the melting temperature of PET (265℃) and PA (230℃), which can maintain the solid state of PET and PA microfiber phase in the composites. Morphological observation with scanning electron microscopy (SEM) indicated that PET and PA can more or less form in-situ microfibers at compositions studied (0~20 wt pct PET or PA), and especially, PET and PA were almost deformed into fibers at the concentration of 15 wt pct. Tensile strength and modulus of the blends reinforced by PET or PA microfibers showed to be increased from the tensile test results. The most noticeable improvement of the tensile properties occurred at 15 wt pct of PET in PET/PE system, corresponding to the highest microfiber content, where the tensile strength reached 32.5 MPa, whereas only 19.5 MPa for the pure PE. 展开更多
关键词 In-situ composite. polyethylene. Polyamide Polyterephthalate
下载PDF
Effect of Carbon Fillers in Ultrahigh Molecular Weight Polyethylene Matrix Prepared by Twin-Screw Extrusion
4
作者 Luiz Felipe M. Rocha Suellem B. Cordeiro +2 位作者 Leonardo C. Ferreira Flávio James H. Ramos Maria de Fátima Marques 《Materials Sciences and Applications》 2016年第12期863-880,共19页
Oxidized (GO) and expanded (G-Exp) graphite were employed to prepare composites with ultrahigh molecular weight polyethylene (UHMWPE) matrix using masterbatches of polyethylene with different compositions. The materia... Oxidized (GO) and expanded (G-Exp) graphite were employed to prepare composites with ultrahigh molecular weight polyethylene (UHMWPE) matrix using masterbatches of polyethylene with different compositions. The materials and a blend of UHMWPE/HDPE were prepared by extrusion and their properties were evaluated. The effect of carbon fillers on the crystalline structure, thermo dynamic-mechanical (DMTA) and thermal properties (melting and crystallization temperatures) of the composites were discussed. The thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) measurements showed that the addition of masterbatch with GO and G-Exp significantly increased the crystallite size of composites, increasing the temperatures of melting, degradation, glass transition and the degree of crystallinity of polyethylene. DMTA analysis indicated the storage and loss moduli of composites in relation to neat UHMWPE, the blend and UHMWPE/composites. SEM micrographs showed a flatter, continuous and uniform surface meaning a compact lamellar structure. The present work resulted in interesting findings on the effects of GO on the crystalline structures, mechanical and thermal properties of UHMWPE, which can lead to generalizations useful for future work. 展开更多
关键词 POLYOLEFIN BLEND Oxidized Graphite Expanded Graphite polyethylene composites
下载PDF
Out-of-Plane Compressive Behavior for UHMWPE/Polyurethane Composites after Hygrothermal Treatment
5
作者 Libao Zhu Yongqing Li +1 位作者 Xi Zhu Zixu Zhu 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期176-183,共8页
Quasi-static and high strain rate compressive behaviors and failure mechanisms of hygrothermal treated ultra-high molecular weight polyethylene/polyurethane(UHMWPE/PU)composites have been studied in this paper.Firstly... Quasi-static and high strain rate compressive behaviors and failure mechanisms of hygrothermal treated ultra-high molecular weight polyethylene/polyurethane(UHMWPE/PU)composites have been studied in this paper.Firstly,the UHMWPE composites were immersed in water at 70℃.The out-ofplane compression test was then performed on the dry/wet state specimens at quasi-static states(0.001-0.01 s^(-1))and high strain rate states(800-2 400 s^(-1)).The split Hopkinson pressure bar(SHPB)was adopted in the dynamic tests and waveform shapers were used to smooth and control the incident pulse.The results show that there are two platforms for the water absorption curve of UHMWPE composites.The absorption of moisture reduces the quasi-static compressive strength of the material while initially increasing,then decreasing the dynamic compressive strength.Matrix plasticization,fiber/matrix interface degradation and void expansion are the main factors affecting the irregular change of static/dynamic compressive strength of UHMWPE composites. 展开更多
关键词 ultra-high molecular weight polyethylene(UHMWPE)composite hygrothermal aging SPLIT Hopkinson pressure bar(SHPB) compression
下载PDF
EFFECTS OF MATRIX MOLECULAR WEIGHT ON STRUCTURE AND REINFORCEMENT OF HIGH DENSITY POLYETHYLENE/MICA COMPOSITES
6
作者 傅强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2011年第3期377-389,共13页
Three types of high-density polyethylene (HDPE) with different molecular weights (high, medium and low) were adopted to evaluate the influence of matrix molecular weight on the structure-property relation of injec... Three types of high-density polyethylene (HDPE) with different molecular weights (high, medium and low) were adopted to evaluate the influence of matrix molecular weight on the structure-property relation of injection-molded HDPE/mica composites through a combination of SEM, 2d-WAXS, DSC, DMA and tensile testing. Various structural factors including orientation, filler dispersion, interfacial interaction between HDPE and mica, etc., which can impact the macroscopic mechanics, were compared in detail among the three HDPE/mica composites. The transcrystallization of HDPE on the mica surface was observed and it exhibited strong matrix molecular weight dependence. Obvious transcrystalline structure was found in the composite with low molecular weight HDPE, whereas it was hard to be detected in the composites with increased HDPE molecular weight. The best reinforcement effect in the composite with low molecular weight HDPE can be understood as mainly due to substantially improved interfacial adhesion between matrix and mica filler, which arises from the transcrystallization mechanism. 展开更多
关键词 polyethylene/mica composite Molecular weight Transcrystallization.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部