Embedding particle drugs in beaded nanofibers by electrospinning has been shown a potential approach to control drug release in tissue engineering. The bead size is one of the critical parameters in controlling the dr...Embedding particle drugs in beaded nanofibers by electrospinning has been shown a potential approach to control drug release in tissue engineering. The bead size is one of the critical parameters in controlling the drug release rate. In this study,the relationship between polymer concentration and beads size was investigated. Aqueous polyethylene oxide( PEO) solutions with different concentrations were prepared to obtain various beaded nanofibers by electrospnning. Optical microscope and scanning electron microscope( SEM) were used to observe the variation tendency of bead size. With an increase in the polymer concentration,the diameter of fibers between beads became bigger,while the fiber uniformity improved. In addition, the polymer concentration influenced the distribution of bead diameter. Higher polymer concentration would reduce the possibility of small-sized beads formation and improve the uniformity of bead diameter. The study provides a possible way to control the size of beads,which is helpful for further research on the control of particle drug release.展开更多
High ionic conductivity,good electrochemical stability,and satisfactory mechanical property are the crucial factors for polymer solid state electrolytes.Herein,fast ion conductor LiAlSiO_4(LASO) is incorporated into p...High ionic conductivity,good electrochemical stability,and satisfactory mechanical property are the crucial factors for polymer solid state electrolytes.Herein,fast ion conductor LiAlSiO_4(LASO) is incorporated into polyethylene oxide(PEO)-based solid-state electrolytes(SSEs).The SSEs containing LASO exhibit enhanced mechanical properties performance compared to pristine PEO-LiTFSI electrolyte.A reduced melting transition temperature of 40.57℃ is enabled by introducing LASO in to PEO-based SSE,which is beneficial to the motion of PEO chain and makes it possible for working at a moderate environment.Coupling with the enhanced motion of PEO,dissociation of the lithium salt,and conducting channel of LASO,the optimized composite polymer SSE exhibits a high ionic conductivity of 4.68×10^(-4),3.16×10^(-4) and 1.62×10^(-4) S cm^(-1) at 60,50 and 40℃,respectively.The corresponding LiFePO_4//Li solid-state battery exhibits high specific capacities of 166,160 and 139 mAh g^(-1) at 0.2 C under 60,40 and 25℃.In addition,it remains 130 mAh g^(-1) at 4.0 C,and maintains 91.74% after 500 cycles at 1.0 C under 60℃.This study provides a simple approach for developing ionic conductor-filled polymer electrolytes in solid-state lithium battery application.展开更多
The selective aerobic oxidation of alkynes to corresponding α,β-acetylenic ketones was achieved in polyethylene glycol/dense CO2/O2 biphasic system without any catalyst or additive. The effects of reaction parameter...The selective aerobic oxidation of alkynes to corresponding α,β-acetylenic ketones was achieved in polyethylene glycol/dense CO2/O2 biphasic system without any catalyst or additive. The effects of reaction parameters, e.g. temperature, CO2 pressure, PEG molecular weight and loading on the reaction were carefully examined. Moreover, various substrates worked well in the presence of PEG 1000 under 5 MPa of CO2 and 2 MPa of O2 at 100 ℃ for 12 to 24 h and acceptable yield and selectivity could be obtained in most cases. Preliminary mechanistic investigations were also discussed.展开更多
BACKGROUND Bowel preparation in children can be challenging.AIM To describe the efficacy, safety, and tolerability of sodium picosulfate, magnesium oxide, and citric acid(SPMC) bowel preparation in children.METHODS Ph...BACKGROUND Bowel preparation in children can be challenging.AIM To describe the efficacy, safety, and tolerability of sodium picosulfate, magnesium oxide, and citric acid(SPMC) bowel preparation in children.METHODS Phase 3, randomized, assessor-blinded, multicenter study of low-volume, divided dose SPMC enrolled children 9-16 years undergoing elective colonoscopy. Participants 9-12 years were randomized 1:1:1 to SPMC ? dose × 2, SPMC 1 dose × 2, or polyethylene glycol(PEG). Participants 13-16 years were randomized 1:1 to SPMC 1 dose × 2 or PEG. PEG-based bowel preparations were administered per local protocol. Primary efficacy endpoint for quality of bowel preparation was responders(rating of ‘excellent' or ‘good') by modified Aronchick Scale. Secondary efficacy endpoint was participant's tolerability and satisfaction from a 7-item questionnaire. Safety assessments included adverse events(AEs) and laboratory evaluations.RESULTS 78 participants were randomized, 48 were 9-12 years, 30 were 13-16 years. For the primary efficacy endpoint in 9-12 years, 50.0%, 87.5%, and 81.3% were responders for SPMC ? dose × 2, SPMC 1 dose × 2, and PEG groups, respectively. Responder rates for 13-16 years were 81.3% for SPMC 1 dose × 2 and 85.7% for PEG. Overall, 43.8% of participants receiving SPMC 1 dose × 2 reported it was ‘very easy' or ‘easy' to drink, compared with 20.0% receiving PEG. Treatment-emergent AEs were reported by 45.5% of participants receiving SPMC 1 dose × 2 and 63.0% receiving PEG.CONCLUSION SPMC was an efficacious and safe for bowel preparation in children 9-16 years, with comparable efficacy to PEG. Tolerability for SPMC was higher compared to PEG.展开更多
Depolymerization of poly(ethylene terephthalate) (PET) was performed in the tubular bomb microreactor which contained the solution of PET in methanol and dibutyltin oxide at the temperature ranging from 433 K to 4...Depolymerization of poly(ethylene terephthalate) (PET) was performed in the tubular bomb microreactor which contained the solution of PET in methanol and dibutyltin oxide at the temperature ranging from 433 K to 473 K, the reaction time from 5 to 45 min and the catalyst-to-PET ratio of 0.3%-2% by weight. The optimal condition for PET depolymerization catalyzed by dibutyltin oxide is the temperature of 443-453 K, the reaction time of 20-25 min and 0.8% by weight of catalyst. By using differential methods, the activation energy for the depolymerization process was found to be 154.05 kJ/mol in the temperature range from 433-463 K.展开更多
Different mass percent polyacrylonitrile (PAN)-polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy. The gels were...Different mass percent polyacrylonitrile (PAN)-polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy. The gels were analysed by using Fourier transform infrared spectrum, gel fraction and ionic conductivity (IC) measurement. The results show that the gel is crosslinked by EB irradiation, the crosslinking degree rises with the increasing EB irradiation dose (ID) and the mass percents of both PAN and PEO contribute a lot to the crosslinking; in addition, EB irradiation can promote the IC of PAN-PEO gels. There exists an optimum irradiation dose, at which the IC can increase dramatically. The IC changes of the PAN-PEO gels along with ID are divided into three regions: IC rapidly increasing region, IC decreasing region and IC balanced region. The cause of the change can be ascribed to two aspects, gel capturing electron degree and crosslinking degree. By comparing the IC-ID curves of different mass percents of PAN and PEO in gel, we found that PAN plays a more important role for gel IC promotion than PEO, since addition of PAN in gel causes the IC-ID curve sharper, while addition of PEO in gel causes the curve milder.展开更多
Pregabalin,(S)-3-amino methyl hexanoic acid,is a structural analogue ofγ-amino butyric acid(GABA)which has been widely used to treat partial seizures and neuropathic pain[1].It is soluble in aqueous solution and spar...Pregabalin,(S)-3-amino methyl hexanoic acid,is a structural analogue ofγ-amino butyric acid(GABA)which has been widely used to treat partial seizures and neuropathic pain[1].It is soluble in aqueous solution and sparingly soluble in organic solvents such as ethanol,DMSO and DMF.Polyethylene oxide(PEO)has a strong negative effect on analysis of hydrophilic active ingredient and its relative substances due to extremely high viscosity of PEO in aqueous media.The aim of this study is to develop a fast and precise method for the determination of pregabalin and its relative substances in extended release tablets including PEO using sodium sulfate for the treatment of sample solution.展开更多
Polyethylene oxide solutions have a behavioral flexibility that provides researchers with the opportunity to use constitutive law models in a variety of ways for their MRI characterization. Our results obtained in num...Polyethylene oxide solutions have a behavioral flexibility that provides researchers with the opportunity to use constitutive law models in a variety of ways for their MRI characterization. Our results obtained in numerical simulation carried out in 2D and 3D for speed profiles of a solution of PEO deployed by the simple method of the cylindrical Couette geometry considering the fluid Newtonian defect, allowed to identify the behavior of fluid complex (rheo-fluidifying threshold fluid). The relevance and the interest of the method are examined by analyzing these results generated by the numerical data obtained, since these profiles depend on the non-Newtonian properties of the fluid which one does not know a priori and which one seeks to measure by postulating first to the power law of Ostwald, then to the truncated power law.展开更多
In literature, neutral polyethylene oxide (PEO) flocculated fines at low shear rates, while with cofactor (CF) addition, the formed CF-PEO complex showed larger ability to bridge fines, producing flocs. In this work, ...In literature, neutral polyethylene oxide (PEO) flocculated fines at low shear rates, while with cofactor (CF) addition, the formed CF-PEO complex showed larger ability to bridge fines, producing flocs. In this work, some process factors were found having significant effects on fines flocculation. Increases in CF to PEO ratio at constant PEO enhanced the bridging bonds, causing increases in flocculation initial rate (efficiency), amplitude (floc size), and fastness (a decrease in characteristic time). On the other hand, an increase in stirring rate (shear rate) in flocculation vessel caused decreases in initial rate and amplitude, and an increase in the fastness. All runs showed transient flocculation;the amplitude increased with time, reached maximum at equilibrium, and then started to decrease showing deflocculation. In brief, the CF to PEO ratio and the shear rate were found important parameters in mill operation, having significant effects on flocculation efficiency, fastness, and floc size.展开更多
In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. T...In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.展开更多
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica...Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.展开更多
Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteri...Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.展开更多
基金Textile Biomaterials Science and Technology Innovation Intelligence(111 Project),China(No.B07024)
文摘Embedding particle drugs in beaded nanofibers by electrospinning has been shown a potential approach to control drug release in tissue engineering. The bead size is one of the critical parameters in controlling the drug release rate. In this study,the relationship between polymer concentration and beads size was investigated. Aqueous polyethylene oxide( PEO) solutions with different concentrations were prepared to obtain various beaded nanofibers by electrospnning. Optical microscope and scanning electron microscope( SEM) were used to observe the variation tendency of bead size. With an increase in the polymer concentration,the diameter of fibers between beads became bigger,while the fiber uniformity improved. In addition, the polymer concentration influenced the distribution of bead diameter. Higher polymer concentration would reduce the possibility of small-sized beads formation and improve the uniformity of bead diameter. The study provides a possible way to control the size of beads,which is helpful for further research on the control of particle drug release.
基金financially supported by the National Natural Science Foundation of China (51804344)the Huxiang Youth Talent Support Program (Grant No. 2019RS2002)+2 种基金the Innovation and Entrepreneurship Project of Hunan Province, China (Grant No. 2018GK5026)the Innovation-Driven Project of Central South University (2020CX027)the Guangdong YangFan Plan for Postdoctor Program。
文摘High ionic conductivity,good electrochemical stability,and satisfactory mechanical property are the crucial factors for polymer solid state electrolytes.Herein,fast ion conductor LiAlSiO_4(LASO) is incorporated into polyethylene oxide(PEO)-based solid-state electrolytes(SSEs).The SSEs containing LASO exhibit enhanced mechanical properties performance compared to pristine PEO-LiTFSI electrolyte.A reduced melting transition temperature of 40.57℃ is enabled by introducing LASO in to PEO-based SSE,which is beneficial to the motion of PEO chain and makes it possible for working at a moderate environment.Coupling with the enhanced motion of PEO,dissociation of the lithium salt,and conducting channel of LASO,the optimized composite polymer SSE exhibits a high ionic conductivity of 4.68×10^(-4),3.16×10^(-4) and 1.62×10^(-4) S cm^(-1) at 60,50 and 40℃,respectively.The corresponding LiFePO_4//Li solid-state battery exhibits high specific capacities of 166,160 and 139 mAh g^(-1) at 0.2 C under 60,40 and 25℃.In addition,it remains 130 mAh g^(-1) at 4.0 C,and maintains 91.74% after 500 cycles at 1.0 C under 60℃.This study provides a simple approach for developing ionic conductor-filled polymer electrolytes in solid-state lithium battery application.
基金supported by the National Natural Science Foundation of China(No.21172125)the Ministry of Science and Technology (2012BAD32B10)+1 种基金the "111" Project of Ministry of Education of China(Project No.B06005)the Committee of Science and Technology of Tianjin
文摘The selective aerobic oxidation of alkynes to corresponding α,β-acetylenic ketones was achieved in polyethylene glycol/dense CO2/O2 biphasic system without any catalyst or additive. The effects of reaction parameters, e.g. temperature, CO2 pressure, PEG molecular weight and loading on the reaction were carefully examined. Moreover, various substrates worked well in the presence of PEG 1000 under 5 MPa of CO2 and 2 MPa of O2 at 100 ℃ for 12 to 24 h and acceptable yield and selectivity could be obtained in most cases. Preliminary mechanistic investigations were also discussed.
文摘BACKGROUND Bowel preparation in children can be challenging.AIM To describe the efficacy, safety, and tolerability of sodium picosulfate, magnesium oxide, and citric acid(SPMC) bowel preparation in children.METHODS Phase 3, randomized, assessor-blinded, multicenter study of low-volume, divided dose SPMC enrolled children 9-16 years undergoing elective colonoscopy. Participants 9-12 years were randomized 1:1:1 to SPMC ? dose × 2, SPMC 1 dose × 2, or polyethylene glycol(PEG). Participants 13-16 years were randomized 1:1 to SPMC 1 dose × 2 or PEG. PEG-based bowel preparations were administered per local protocol. Primary efficacy endpoint for quality of bowel preparation was responders(rating of ‘excellent' or ‘good') by modified Aronchick Scale. Secondary efficacy endpoint was participant's tolerability and satisfaction from a 7-item questionnaire. Safety assessments included adverse events(AEs) and laboratory evaluations.RESULTS 78 participants were randomized, 48 were 9-12 years, 30 were 13-16 years. For the primary efficacy endpoint in 9-12 years, 50.0%, 87.5%, and 81.3% were responders for SPMC ? dose × 2, SPMC 1 dose × 2, and PEG groups, respectively. Responder rates for 13-16 years were 81.3% for SPMC 1 dose × 2 and 85.7% for PEG. Overall, 43.8% of participants receiving SPMC 1 dose × 2 reported it was ‘very easy' or ‘easy' to drink, compared with 20.0% receiving PEG. Treatment-emergent AEs were reported by 45.5% of participants receiving SPMC 1 dose × 2 and 63.0% receiving PEG.CONCLUSION SPMC was an efficacious and safe for bowel preparation in children 9-16 years, with comparable efficacy to PEG. Tolerability for SPMC was higher compared to PEG.
文摘Depolymerization of poly(ethylene terephthalate) (PET) was performed in the tubular bomb microreactor which contained the solution of PET in methanol and dibutyltin oxide at the temperature ranging from 433 K to 473 K, the reaction time from 5 to 45 min and the catalyst-to-PET ratio of 0.3%-2% by weight. The optimal condition for PET depolymerization catalyzed by dibutyltin oxide is the temperature of 443-453 K, the reaction time of 20-25 min and 0.8% by weight of catalyst. By using differential methods, the activation energy for the depolymerization process was found to be 154.05 kJ/mol in the temperature range from 433-463 K.
基金Project supported by the National Basic Research Program of China (Grant No.2010CB832902)the Key Program of the National Natural Science Foundation of China (Grant No.10835010)the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No.KJCX2-YW-N35)
文摘Different mass percent polyacrylonitrile (PAN)-polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy. The gels were analysed by using Fourier transform infrared spectrum, gel fraction and ionic conductivity (IC) measurement. The results show that the gel is crosslinked by EB irradiation, the crosslinking degree rises with the increasing EB irradiation dose (ID) and the mass percents of both PAN and PEO contribute a lot to the crosslinking; in addition, EB irradiation can promote the IC of PAN-PEO gels. There exists an optimum irradiation dose, at which the IC can increase dramatically. The IC changes of the PAN-PEO gels along with ID are divided into three regions: IC rapidly increasing region, IC decreasing region and IC balanced region. The cause of the change can be ascribed to two aspects, gel capturing electron degree and crosslinking degree. By comparing the IC-ID curves of different mass percents of PAN and PEO in gel, we found that PAN plays a more important role for gel IC promotion than PEO, since addition of PAN in gel causes the IC-ID curve sharper, while addition of PEO in gel causes the curve milder.
文摘Pregabalin,(S)-3-amino methyl hexanoic acid,is a structural analogue ofγ-amino butyric acid(GABA)which has been widely used to treat partial seizures and neuropathic pain[1].It is soluble in aqueous solution and sparingly soluble in organic solvents such as ethanol,DMSO and DMF.Polyethylene oxide(PEO)has a strong negative effect on analysis of hydrophilic active ingredient and its relative substances due to extremely high viscosity of PEO in aqueous media.The aim of this study is to develop a fast and precise method for the determination of pregabalin and its relative substances in extended release tablets including PEO using sodium sulfate for the treatment of sample solution.
文摘Polyethylene oxide solutions have a behavioral flexibility that provides researchers with the opportunity to use constitutive law models in a variety of ways for their MRI characterization. Our results obtained in numerical simulation carried out in 2D and 3D for speed profiles of a solution of PEO deployed by the simple method of the cylindrical Couette geometry considering the fluid Newtonian defect, allowed to identify the behavior of fluid complex (rheo-fluidifying threshold fluid). The relevance and the interest of the method are examined by analyzing these results generated by the numerical data obtained, since these profiles depend on the non-Newtonian properties of the fluid which one does not know a priori and which one seeks to measure by postulating first to the power law of Ostwald, then to the truncated power law.
文摘In literature, neutral polyethylene oxide (PEO) flocculated fines at low shear rates, while with cofactor (CF) addition, the formed CF-PEO complex showed larger ability to bridge fines, producing flocs. In this work, some process factors were found having significant effects on fines flocculation. Increases in CF to PEO ratio at constant PEO enhanced the bridging bonds, causing increases in flocculation initial rate (efficiency), amplitude (floc size), and fastness (a decrease in characteristic time). On the other hand, an increase in stirring rate (shear rate) in flocculation vessel caused decreases in initial rate and amplitude, and an increase in the fastness. All runs showed transient flocculation;the amplitude increased with time, reached maximum at equilibrium, and then started to decrease showing deflocculation. In brief, the CF to PEO ratio and the shear rate were found important parameters in mill operation, having significant effects on flocculation efficiency, fastness, and floc size.
文摘In this study, high-density polyethylene (HDPE)/exfoliated graphite nanoplatelet (xGnP) composites reinforced with a 2 wt.% concentration of nano-magnesia (n-MgO) were fabricated using an injection moulding machine. The thermal properties and morphological structures of the composites were investigated. The XRD results showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with adding increasing amounts of xGnP into the polymermatrix. In terms of morphology, some agglomeration of particles was observed within the matrix, and the agglomeration decreased the thermal properties of the composites. The nanocomposites showed less thermal stability than the pristine polymer. The reduction in the onset temperature compared to that of neat HDPE was attributed to less adhesion between the fillers and the matrix. In addition, the crystallinity was reduced by the addition of fillers.
文摘Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.
基金This work was supported by the Major Science and Technology Projects of Henan Province(221100230200)the National Key Research and Development Program of China(2020YFB1713500)Open Fund of State Key Laboratory of Advanced Refractories(No.SKLAR202210).
文摘Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.