期刊文献+
共找到3,363篇文章
< 1 2 169 >
每页显示 20 50 100
Overview of the Synthesis, Characterization, and Application of Tannin-Glyoxal Adhesive for Wood-Based Composites
1
作者 Awanda Wira Anggini Rita Kartika Sari +3 位作者 Efri Mardawati Tati Karliati Apri Heri Iswanto Muhammad Adly Rahandi Lubis 《Journal of Renewable Materials》 EI CAS 2024年第7期1165-1186,共22页
More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that ... More than a century after its initial synthesis,urea-formaldehyde(UF)resins still have dominant applications as adhesives,paints,and coatings.However,formaldehyde in this industry produces formaldehyde emissions that are dangerous to health.Scientists have spent the last decade replacing formaldehyde and phenol with environmentally friendly substances such as glyoxal and tannin to create bio-based adhesives.This review covers recent advances in synthesizing glyoxal tannin-based resins,especially those made from sustainable raw material substitutes and changes made to synthetic processes to improve mechanical properties.The efficacy of using tannin-glyoxal adhesives in producing wood-based composites has been proven.The glyoxylate reaction forms cross-linked bridges between the aromatic sites of the tannin and glyoxal molecular structures.Glyoxal tannin adhesive with a greater percentage of glyoxal than tannin will produce an adhesive with better characteristics.The gel time reduces as the hardener concentration rises from 7.5%to 15%when glyoxal is used in adhesives.However,excessive amounts of glyoxal will result in a decrease in viscosity values.Glyoxal exhibits faster delivery degradation when it reaches a maximum temperature of approximately 130°C,although it initiates the curing process slightly slower at 110°C.Adding glyoxal to tannin-based adhesives can improve the mechanical properties of composite boards.The wet shear strength of the resulting plywood is increased by 105.4%with the addition of 5-weight percent tannin-based resin with glyoxal as a cross-linker in Soy Protein Adhesive.With glyoxal as a hardener,the panels produced showed good internal bond strengths(>0.35 MPa)and met the international standard specifications for interior-grade panels. 展开更多
关键词 Bio-based adhesives GLYOXAL TANNIN wood adhesives wood-based composites
下载PDF
Experimental Study of the Influence of Intrinsic Parameters on the Thermal Reactivity of Sawdust, Polyethylene Terephthalate and Composite
2
作者 Ange Brel Boukongou Timoléon Andzi Barhé 《Journal of Materials Science and Chemical Engineering》 2024年第3期9-20,共12页
Several works have been based on the study of thermal variations in biomass to derive more valuable products such as fuels capable of replacing oil in the event of a crisis or activated carbon used as an adsorbent mat... Several works have been based on the study of thermal variations in biomass to derive more valuable products such as fuels capable of replacing oil in the event of a crisis or activated carbon used as an adsorbent material, widely used in industry for the elimination of unwanted materials, both in liquid and gaseous environments. A study of thermal parameters such as: heating speed, retention time, drying temperature, carbonization temperature, particle size, was carried out with the aim of determining the characteristic factors of the carbonization of Polyethylene terephthalate (PET), sawdust (SC) and sawdust/polyethylene terephthalate (CPS) mixture. The results of the immediate analysis revealed a very low level of ash in PET (0.013%) compared to the level of ash in sawdust (2.9%), as well as a high level of fixed carbon (82.960%), which suggests the presence of mineral oxides and a significant carbon matrix unlike PET, which indicates a very significant organic matrix (essentially made up of organic matter) with the absence of mineral oxides. The study of thermal parameters showed the water loss from Sawdust (SC) and the Sawdust/Polyethylene terephthalate (CPS) mixture, an increase with temperature, unlike that of PET whose variation is essentially zero. Without heat treatment, sawdust alone contains approximately 7% water. The optimal drying temperature for this study is 110˚C for a stay of 24 hours. It appears that the largest mass losses for the PET samples are between 87.19% and 96.05%, followed by that of the mixture, between 47.33% and 64.37%. And the lowest are observed, those of sawdust (from 24.02% to 62.6%). However, here we can say that the influence of the mass is not great, given the slight difference between the losses by temperature. The results of the study of the influence of grain size showed that the differences are insignificant, even if we vary the diameter of the grains from simple to triple. To better minimize physical constraints such as the intragranular diffusibility of the volatile matter and the homogeneity of the temperature in the grains, 75 μm particles are found to be optimal for our study. It can be noted when studying the heating rate that the mass loss at the end of the reaction is approximately the same depending on each precursor material. However, it has been demonstrated that the heating rate strongly influences the nature of the reaction products both for volatile materials and for the solid residue as well as on the kinetic parameters of the chemical reaction. Furthermore, the variation in apparent density shows a decrease as a function of the increase in the residence time of the materials in the reactor. As the carbonization time increases, the apparent density decreases. We note, for the lignocellulosic material, that the apparent density stabilizes after 60 minutes. 展开更多
关键词 Intrinsic Parameters Thermal Reactivity SAWDUST polyethylene Terephthalate compositE
下载PDF
Toughening wood/polypropylene composites with polyethylene octene elastomer (POE) 被引量:3
3
作者 JIANG Feng QIN Te-fu 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第4期312-314,共3页
Polyethylene octene elastomer (POE) as impact modifier was incorporated into wood/polypropylene composites (WPC) to enhance the impact strength of the composite. Two extruding routes, i.e. direct extruding route and t... Polyethylene octene elastomer (POE) as impact modifier was incorporated into wood/polypropylene composites (WPC) to enhance the impact strength of the composite. Two extruding routes, i.e. direct extruding route and two-stage extruding route, were adopted to produce Wood Powder/PP/POE ternary composites. The mechanical and dynamic mechanical analysis (DMA) properties of the composites were investigated. The results showed that the addition of POE can increase the impact strength of the composites, and the composites produced via two-stage extruding route showed superior mechanical properties. The results of the DMA confirmed the mechanical tests. 展开更多
关键词 wood Powder polyethylene Octene Elastomer (POE) Polypropylene Impact strength Dynamic Mechanical Analysis (DMA)
下载PDF
The properties of flax fiber reinforced wood flour/high density polyethylene composites 被引量:3
4
作者 Jingfa Zhang Haigang Wang +1 位作者 Rongxian Ou Qingwen Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期524-531,共8页
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare ... Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material. 展开更多
关键词 wood-plastic composites Flax fiber REINFORCEMENT PROCESSING Mechanical property Creep resistance
下载PDF
The effect of Poly-ethylene-co-glycidyl methacrylate efficiency and clay platelets on thermal and rheological properties of wood polyethylene composites. 被引量:1
5
作者 Ansou Malang Badji El Hadj Babacar Ly +3 位作者 Diene Ndiaye Abdou Karim Diallo Ndickou Kebe Vincent Verney 《Advances in Chemical Engineering and Science》 2016年第4期436-455,共20页
Global ecological concerns have resulted in an interest in renewable natural materials. Composites based on high density polyethylene (HDPE), wood fiber (Veneer) and containing coupling agents like nanoclay (NC) and p... Global ecological concerns have resulted in an interest in renewable natural materials. Composites based on high density polyethylene (HDPE), wood fiber (Veneer) and containing coupling agents like nanoclay (NC) and poly-ethylene-co-glycidyl methacrylate (PEGMA) were made by melt compounding and then injection molding. In this study, the effects of two variable parameters namely nanoclay and coupling agent on the rheological and thermal properties of wood polyethylene composites (WPECs) were investigated. The study investigates the morphology phase, rheology behaviors and thermal properties by scanning electron microscope, capillary rheometer and thermal gravimetric analyzer. The SEM micrographs of the composites showed that the outer surfaces of the wood were coated by a section of amorphous lignin. The state of dispersion in HDPE/pine/clay composites was improved by EGMA because it could interact with pine flour in addition to clay. The interaction of reinforcement with coupling agent and HDPE matrix is strong based on the observation of the fracture surface of composites when EGMA is present. However the addition of 2.5% clay slightly lowered the initial degradation temperature (Td) but did not improve the thermal stability. Obviously, all the composites materials exhibit viscoelastic values greater than those of neat HDPE. 展开更多
关键词 wood HDPE composite Rheological and Thermal Properties Microscopy TGA
下载PDF
Mechanical Properties and Fire Retardancy of Wood Flour/High-Density Polyethylene Composites Reinforced with Continuous Honeycomb-Like Nano-SiO_(2)Network and Fire Retardant
6
作者 Haiyang Zhou Xiaoyu Wang +2 位作者 Xiaolong Hao Qingwen Wang Rongxian Ou 《Journal of Renewable Materials》 SCIE EI 2020年第5期485-498,共14页
The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)ne... The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)network.The wood flour was modified with a fire retardant(a mixture of sodium octabonate and amidine urea phosphate)to improve its fire retardancy.The flexural properties,creep resistance,thermal expansion,and fire retardancy of the WPC were compared to a control(WPCCTRL)without nano-SiO_(2)or fire retardant.The flexural strength and modulus of the WPC containing only 0.55 wt.%nano-SiO_(2)were 6.6%and 9.1%higher than the control,respectively,while the creep strain and thermal expansion rate at 90°C were 33.8%and 13.6%lower,respectively.The cone calorimetry tests revealed that the nano-SiO_(2)network physically shielded the WPC,giving it lower heat release and smoke production rates.The thermal expansion was further decreased by incorporating fire retardants into the WPC,which showed the lowest total heat release and total smoke production and the highest mass retention.This study demonstrates a facile procedure for producing WPC with desired performances by forming a continuous honeycomb-like network by adding a small amount of nanoparticles. 展开更多
关键词 wood plastic composites nano-SiO_(2) mechanical properties CREEP fire retardancy
下载PDF
Valorization of Tree Bark-Derived Suberin in Applications for the Bio-Based Composites Industry–A Recent Review
7
作者 Aleksandra Jeżo 《Journal of Renewable Materials》 EI CAS 2024年第6期1029-1042,共14页
Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers,for example,in wood-based composites.In addition to primary and secondary metabolites,tree bark also... Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers,for example,in wood-based composites.In addition to primary and secondary metabolites,tree bark also contains suberin,which plays a major role in protecting the tree from environmental conditions.Suberin is a natural aliphatic-aromatic cross-linked polyester present in the cell walls of both normal and damaged external tissues,the main component of which are long-chain aliphatic acids.Its main role as a plant ingredient is to protect against microbiological factors and water loss.One of the most important suberin monomers are suberin fatty acids,known for their hydrophobic and barrier properties.Therefore,due to the diverse chemical composition of suberin,it is an attractive alternative to hydrocarbon-based materials.Although its potential is recognized,it is not widely used in biocomposites technology,including wood-based composites and the polymer industry.The article will discuss the current knowledge about the potential of suberin and its components in biocomposites technology,which will include surface finishes,composite adhesives and polymer blends. 展开更多
关键词 SUBERIN suberinic acids wood composites BIOcomposites biopolyester
下载PDF
Novel wood-plastic composite fabricated via modified steel slag:Preparation,mechanical and flammability properties
8
作者 Ling Zhao Kai Zhao +4 位作者 Zhenwei Shen Yifan Wang Xiaojie Xia Hao Zhang Hongming Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2110-2120,共11页
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare... A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors. 展开更多
关键词 modified steel slag wood–plastic composites preparation method mechanical property flame retardant
下载PDF
Ballistic Penetration Damage of Hybrid Thermoplastic Composites Reinforced with Kevlar and UHMWPE Fabrics
9
作者 LI Zhiyong XUE Yousong +1 位作者 SUN Baozhong GU Bohong 《Journal of Donghua University(English Edition)》 CAS 2024年第4期398-404,共7页
Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybr... Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials. 展开更多
关键词 polyurethane(PU) KEVLAR ultra-high molecular weight polyethylene(UHMWPE) hybrid composite ballistic impact specific energy absorption
下载PDF
Physicomechanical Properties of Sustainable Wood Plastic Composites of Tropical Sawdust and Thermoplastic Waste for Possible Utilization in the Wood Industry
10
作者 Jude I. Duruaku Patrick A. C. Okoye +3 位作者 Theresa U. Onuegbu Valentine I. Onwukeme Nkechi H. Okoye Joseph O. Nwadiogbu 《Journal of Sustainable Bioenergy Systems》 2023年第4期149-171,共23页
This work investigated and quantified the physicomechanical properties of flat-pressed wood plastic composites produced with recycled polyethylene terephthalate, recycled polyethylene and sawdust derived from selected... This work investigated and quantified the physicomechanical properties of flat-pressed wood plastic composites produced with recycled polyethylene terephthalate, recycled polyethylene and sawdust derived from selected tropical timbers, namely, Nauclea diderrichii, Brachystegia eurycoma, Erythrophleum suaveolens and Prosopis africana, for possible utilization in the wood industry. The compounding of the polymer blends of the precursor plastics, namely recycled PET (rPET) and recycled PE (rPE) with the sawdust (SD) from the selected timbers to produce the desired wood rPET/rPE composites was carried out via the flat press method. The characterization of the physicomechanical properties of the wood plastic composites (WPCs) produced, such as the density, hardness, flexural strength, ultimate tensile strength, elongation %, thickness swelling and water absorption capacity was carried out using methods based mainly on the European Committee for Standardization (CEN) and the American Society for Testing Materials (ASTM) standards. The results of the investigation on the resultant composites indicated that changes in the SD content affected the density of flat-pressed WPCs in line with literature. Generally, it was observed that as wood dust increased and PET content decreased, the density of composites decreased with some deviations as expected probably due to the anisotropic nature of the wood fillers. The analysis of variance (ANOVA) revealed that there was a statistically significant variation in the wood composites of Nuclea diderichii based on the physicomechanical values as the p-value (0.020) obtained was less than the critical level of α = 0.05. It was also observed that the composite, Wood 1 Sample 5 (W<sub>1</sub>S<sub>5</sub>) which was composed of 40% rPE, 40% rPET and 20% SD (derived from Nuclea diderichii), had the highest percentage elongation (26.84%);the highest flexural strength (14.995 N/mm<sup>2</sup>) and possibly the least carbon footprint in the environment. These properties of W<sub>1</sub>S<sub>5</sub> suggest that it could therefore be the best option for the production of building materials like ceiling boards or floor skirting in the wood plastic composite industry. The results of these investigations have therefore indicated that the fabrication of WPCs from sawdust and rPET/rPE was technically feasible and had prospects for large scale production in the wood industry. 展开更多
关键词 wood Plastic composites Density Water Absorption Capacity CELLULOSE Sustainability RECYCLE Waste
下载PDF
Thermal Decomposition Behavior and Kinetics of Composites from Coal and Polyethylene 被引量:5
11
作者 YANG Fu-sheng QU Jian-lin +1 位作者 YANG Zhi-yuan ZHOU An-ning 《Journal of China University of Mining and Technology》 EI 2007年第1期25-29,共5页
A thermogravimetric analysis (TG) was conducted to study the thermal decomposition behavior and kinetics of composites from coal and high density polyethylene (HDPE), linear low density polyethylene (LLDPE) or low den... A thermogravimetric analysis (TG) was conducted to study the thermal decomposition behavior and kinetics of composites from coal and high density polyethylene (HDPE), linear low density polyethylene (LLDPE) or low density polyethylene (LDPE). The results show that coal facilitates melting of the polyethylene before temperatures reach 700 K in nitrogen due to the exothermic effect of coal. Above 700 K, adding coal into the polyethylene will result in smaller maximum rates of mass loss and higher initial mass loss temperatures of the composites. Hence, some chemical interactions, occurring between liquid compounds released in the pyrolysis of the coal and polymer, depend on several factors, such as coal rank and the molecular structure of polymers. Synergetic effects in coal and polymers were also found. Both chemical interactions and synergetic effects control the entire thermal decomposition behavior of compos- ites. The larger the amount of coal in the composites, the greater the decomposition temperature spans and the higher the maximum decomposition temperature, the smaller the devolatilization rates. The effect of coal on the thermal stability of composites lies in the hydrogen acceptor effect of the coals. Thermal decomposition of the coals, the polymers and related composites can be modelled via first order parallel reactions between 563 K and 763 K. 展开更多
关键词 COAL polyethylene compositE THERMAL KINETICS
下载PDF
Optimization of Process Parameter for Sawdust/Recycled Polyethylene Composites 被引量:1
12
作者 Clement U. Atuanya Chizoba M. Obele 《Journal of Minerals and Materials Characterization and Engineering》 2016年第4期270-277,共9页
In this paper, Okhuen wood sawdust and recycled polyethylene (RLDPE) were blended and then hot-pressed to produce sawdust/recycled polyethylene composite board. The optimum processing parameters for preparing the comp... In this paper, Okhuen wood sawdust and recycled polyethylene (RLDPE) were blended and then hot-pressed to produce sawdust/recycled polyethylene composite board. The optimum processing parameters for preparing the composite such as temperature, pressing time, sawdust/RLDPE content and pressure were investigated and optimized using L<sub>9</sub> (3<sup>4</sup>) Taguchi experimental design orthogonal array. The tensile strength of the various formulations was determined. The results show that those factors made different effects on the tensile strength of the composites. The optimized process conditions obtained are as follows: press time 7 min, press temperature 180°C, saw-dust/RLDPE 60:40%, press pressure 40kg/cm<sup>2</sup>. The average tensile strength of the optimized composite board was 13.991 MPa. The composite board met the standard for general purpose applications. 展开更多
关键词 Okhuen wood Recycled Low Density polyethylene Taguchi Method Tensile Properties
下载PDF
Optimization of Extrusion Process Parameters of Recycled High-Density Polyethylene-Thermoplastic Starch Composite for Fused Filament Fabrication
13
作者 Grace Njeri Wamuti James Wamai Mwangi +2 位作者 Samuel Kabini Karanja Leif Micke Henning Zeidler 《Open Journal of Composite Materials》 2023年第4期69-86,共18页
High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in lan... High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF. 展开更多
关键词 Additive Manufacturing (AM) Fused Filament Fabrication (FFF) High Density polyethylene (HDPE) Thermoplastic Starch (TPS) Bio-composite
下载PDF
Improvement of Mechanical,Dynamic-Mechanical and Thermal Properties for Noil Ramie Fiber Reinforced Polyethylene Composites
14
作者 Zhang Yang Xue Ping +3 位作者 Ding Yun Jia Mingyin Shi Zhenwei Wang Hao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期121-128,共8页
Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic me... Noil discarded fibers from fiber production for textile industry have short length and are always considered less valuable.Here,noil ramie fibers/HDPE composite is prepared using twin-screw extruder and the dynamic mechanical and thermal properties are studied.The influence of ramie fiber and maleic anhydride-grafted polyolefin(MA-g-PO)on mechanical,dynamic mechanical and thermal properties is investigated.It is observed that the tensile,flexural and impact properties of the composites treated with MA-g-PO are all improved in comparison to the untreated composites.Dynamic mechanical properties of the composite with MA-g-PO show an increase in the storage modulus with a higherαrelaxation peak,together with the micromorphology analysis,indicating an improved interfacial bonding between fiber and matrix by the MA-g-PO addition.Furthermore,the change in TGA thermograms of composite caused by MA-g-PO exhibits that the addition of MA-g-PO is also helpful to increase the thermal stability of noil ramie fiber/HDPE composites. 展开更多
关键词 noil ramie fiber high density polyethylene(HDPE) mechanical properties MA-g-PO natural fi ber composites
下载PDF
Progressive Failure Analysis of Quasi-isotropic Self-reinforced Polyethylene Composites by Comparing Unsupervised and Supervised Classifications of Acoustic Emission Data
15
作者 杨璧玲 黄龙全 梁海先 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期468-473,共6页
Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the... Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the various mechanisms in the multiangle-ply thermoplastic composites. Ultra-high molecular weight polyethylene / low density polyethylene( UHMWPE / LDPE)composites were made and tested under quasi-static tensile load. The failure process was monitored by the AE technique. The collected AE signals were classified by unsupervised and supervised PR techniques, respectively. AE signals were clustered with unsupervised PR scheme automatically and mathematically. While in the supervised PR scheme,the labeled AE data from simple lay-up UHMWPE / LDPE laminates were utilized as the reference data.Comparison was drawn according to the analytical results. Fracture surfaces of the UHMWPE / LDPE specimens were observed by a scanning electron microscope( SEM) for some physical support. By combining both classification results with the observation results,correlations were established between the AE signal classes and their originating damage modes. The comparison between the two classifying schemes showed a good agreement in the main damage modes and their failure process. It indicates both PR techniques are powerful for the complicated thermoplastic composites. Supervised PR scheme can lead to a more precise classification in that a suitable reference data set is input. 展开更多
关键词 ultra-high molecular weight polyethylene / low density polyethylene(UHMWPE / LDPE) composites THERMOPLASTIC progressive failure analysis damage modes pattern recognition(PR) acoustic emission(AE)
下载PDF
Decorative Wood Fiber/High-Density Polyethylene Composite with Canvas or Polyester Fabric
16
作者 Jialin Lv Rao Fu +4 位作者 Yinan Liu Xuelian Zhou Weihong Wang Pengbo Xie Tingwei Hu 《Journal of Renewable Materials》 SCIE EI 2020年第8期879-890,共12页
Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating w... Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength. 展开更多
关键词 wood-plastic composites high-density polyethylene polyester fiber CANVAS surface decoration
下载PDF
Characterization and Comparison of Rheological Properties of Agro Fiber Filled High-Density Polyethylene Bio-Composites 被引量:1
17
作者 Anselm O. Ogah Joseph N. Afiukwa A. A. Nduji 《Open Journal of Polymer Chemistry》 2014年第1期12-19,共8页
The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100... The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers. 展开更多
关键词 MELT RHEOLOGY Agro Fiber BIO-composites VISCOELASTICITY HIGH-DENSITY polyethylene
下载PDF
Rheological and mechanical properties of wood fiber-PP/PE blend composites 被引量:9
18
作者 高华 宋永明 +2 位作者 王清文 韩振 张明丽 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期315-318,共4页
For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the inte... For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the interfacial adhesion between wood fiber and matrix. WPCs were prepared from wood fiber up to 60 wt.% and modified PP/PE was blended by extrusion. The rheological properties were studied by using dynamic measurement. According to the strain sweep test, the linear viscoelastic region of composites in the melt was determined. The result showed that the storage modulus was independent of the strain at low strain region (〈0.1%). The frequency sweep resuits indicated that all composites exhibited shear thinning behavior, and both the storage modulus and complex viscosity of MAH modified composites were decreased comparing to those unmodified. Flexural properties and impact strength of the prepared WPCs were measured according to the relevant standard specifications. The flexural and impact strength of the manufactured composites significantly increased and reached a maximum when MAH dosage was 1.0 wt%, whereas the flexural modulus after an initial decreased, also increased with MAH dosage. The increase in mechanical properties indicated that the presence of anhydride groups enhanced the interracial adhesion between wood fiber and PP/PE blends. 展开更多
关键词 wood fiber PP/PE blends composites rheological properties mechanical properties
下载PDF
Effects of different modifiers on the properties of wood-polymer composites 被引量:7
19
作者 许民 才智 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第1期77-79,J004,共4页
Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The ... Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai 展开更多
关键词 wood fiber Thermoplastic polyester wood-polymer composites MODIFIER Mechanical properties
下载PDF
Effects of two modification methods on the mechanical properties of wood flour/recycled plastic blends composites: addition of thermoplastic elastomer SEBS-g-MAH and in-situ grafting MAH 被引量:1
20
作者 宋永明 王清文 +2 位作者 韩广平 王海刚 高华 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第3期373-378,399,400,共8页
The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends com... The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends composites was investigated. Recycled plastic polypro-pylene (PP), high-density polyethylene (HDPE) and polystyrene (PS), were mixed with wood flour in a high speed blender and then extruded by a twin/single screw tandem extruder system to form wood flour/recycled plastic blends composites. Results show that the impact properties of the composites were improved more significantly by using SEBS-g-MAH compatibilizer than by using the mixtures of MAH and DCP via reactive blending in situ. However, contrary results were ob-served on the tensile and flexural properties of the corresponding com-posites. In General, the mechanical properties of composites made from recycled plastic blends were inferior to those made from virgin plastic blends, especially in elongation break. The morphological study verified that the interfacial adhesion or the compatibility of plastic blends with wood flour was improved by adding SEBS-g-MAH or in-situ grafting MAH. A better interfacial bonding between PP, HDPE, PS and wood flour was obtained by in-situ grafting MAH than the addition of SEBS-g-MAH. In-situ grafting MAH can be considered as a potential way of increasing the interfacial compatibility between plastic blends and wood flour. The storage modulus and damping factor of composites were also characterized through dynamic mechanical analysis (DMA). 展开更多
关键词 COMPATIBILIZER composites in-situ grafting recycled plastic blends wood flour
下载PDF
上一页 1 2 169 下一页 到第
使用帮助 返回顶部